Injective module

From Wikipedia, the free encyclopedia

In mathematics, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, then any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced by Reinhold Baer in 1940.

Contents

[edit] Definition

More formally, a left module Q over the ring R is injective if it satisfies one (and therefore all) of the following equivalent conditions:

  • If Q is a submodule of some other left R-module M, then there exists another submodule K of M such that M is the internal direct sum of Q and K, i.e. Q + K = M and QK = {0}.
  • If X is a submodule of the left R-module Y and g : XQ is a module homomorphism, then there exists a module homomorphism h : YQ such that h(x) = g(x) for all x in X.
  • If X and Y are left-R modules and f : XY is an injective module homomorphism and g : XQ is an arbitrary module homomorphism, then there exists a module homomorphism h : YQ such that hf = g, i.e. such that the following diagram commutes:
commutative diagram defining injective module Q

Injective right R-modules are defined in complete analogy.

[edit] Examples

Trivially, the zero module {0} is injective.

Given a field k, every k-vector space Q is an injective k-module. Reason: if Q is a subspace of V, we can find a basis of Q and extend it to a basis of V. The new extending basis vectors span a subspace K of V and V is the internal direct sum of Q and K. Note that the direct complement K of Q is not uniquely determined by Q, and likewise the extending map g in the above definition is typically not unique.

If G is a finite group and k a field with characteristic 0, then one shows in the theory of group representations that any subrepresentation of a given one is already a direct summand of the given one. Translated into module language, this means that all modules over the group algebra kG are injective. If the characteristic of k is not zero, the following example may help.

If A is a unital associative algebra over the field k with finite dimension over k, then Homk(−, k) is a duality between finitely generated left A-modules and finitely generated right A-modules. Therefore, the finitely generated injective left A-modules are precisely the modules of the form Homk(P, k) where P is a finitely generated projective right A-module.

Over other rings, injective modules are abundant, but it is not easy to come up with examples without some theory (mentioned below). The rationals Q (with addition) form an injective abelian group (i.e. an injective Z-module). The factor group Z/nZ for n > 1 is injective as a Z/nZ-module, but not injective as an abelian group.

[edit] Injective dimension

The injective dimension of an A-module M is the infimum of lengths of an injective resolution of M. It may take the value ∞. Equivalently, it is the minimal integer (if there is such, otherwise ∞) n such that \operatorname{Ext}^N_A(-,M) = 0 for all N > n.

[edit] Facts

Any product of (even infinitely many) injective modules is injective. Every direct sum of finitely many injective modules is injective. In general, submodules, factor modules or infinite direct sums of injective modules need not be injective.

In Baer's original paper, he proved a useful result, usually known as Baer's Criterion, for checking whether a module is injective: a left R-module Q is injective if and only if any homomorphism g : IQ defined on a left ideal I of R can be extended to all of R.

Using this criterion, one can show that Q is an injective abelian group (i.e. an injective module over Z). More generally, an abelian group is injective if and only if it is divisible. More generally still: a module over a principal ideal domain is injective if and only if it is divisible (the case of vector spaces is an example of this theorem, as every field is a principal ideal domain and every vector space is divisible). Over a general integral domain, we still have one implication: every injective module over an integral domain is divisible.

Maybe the most important injective module is the abelian group Q/Z. It is an injective cogenerator in the category of abelian groups, which means that it is injective and any other module is contained in a suitably large product of copies of Q/Z. So in particular, every abelian group is subgroup of an injective one. It is quite significant that this is also true over any ring: every module is a submodule of an injective one, or "the category of left R-modules has enough injectives." To prove this, one uses the peculiar properties of the abelian group Q/Z to construct an injective cogenerator in the category of left R-modules.

One can then go on to define the injective hull of a module (essentially the smallest injective module containing the given one). Every module M also has an injective resolution: an exact sequence of the form

0 → MI0I1I2 → ...

where the I j are injective. These injective resolutions are used to define the injective dimension of a module (the length of the shortest injective resolution ending in zeros, if such a finite resolution exists) as well as derived functors.

Every indecomposable injective module has a local endomorphism ring.

[edit] Generalization

One also talks about injective objects in categories more general than module categories, for instance in functor categories or in categories of sheaves of OX-modules over some ringed space (X,OX). The following general definition is used: an object Q of the category C is injective if for any monomorphism f : XY in C and any morphism g : XQ there exists a morphism h : YQ with hf = g.

[edit] References

  • F.W. Anderson and K.R. Fuller: Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, 2nd Ed., Springer-Verlag, New York, 1992.

[edit] See also