Infrared photography
From Wikipedia, the free encyclopedia
In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Usually an "infrared filter" is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red).
When these filters are used together with infrared-sensitive film or sensors, very interesting "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect."
The effect is mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is extremely small and is not the real cause of the brightness seen in infrared photographs.
The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.
Contents |
[edit] History
Until the early 1900s, infrared photography was not possible because silver halide emulsions are not sensitive to infrared radiation without the addition of a dye to act as a color sensitizer[1]. The first infrared photograph was published in 1910 by Robert W. Wood, who discovered the unusual color effects that now bear his name[2]. Wood's photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes.
Infrared-sensitive photographic plates were developed in the United States during World War I for improved aerial photography.[3]
False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film, Type 8443, in the 1960s.
Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank Zappa and the Grateful Dead all issued albums with infrared cover photos. The unexpected colors and effects that infrared film can produce fit well with the psychadelic aesthetic that emerged in the late 1960s. Infrared photography can easily look gimmicky, but photographers such as Elio Ciol have made subtle use of black-and-white infrared-sensitive film.
[edit] Focusing infrared
Most manual focus 35mm SLR and medium format SLR lenses have a red dot, line or diamond, often with a red "R" called the infrared index mark, that can be used to achieve proper infrared focus; many autofocus lenses no longer have this mark. When a single-lens reflex (SLR) camera is fitted with a filter that is opaque to visible light, the reflex system becomes useless for both framing and focusing, and a tripod is necessary for composition without the filter before the exposure is done with the filter attached. A sharp infrared photograph can be done with a tripod, a narrow aperture (like f/22) and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use.
Most apochromatic ('APO') lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not require this adjustment because mirrors do not suffer from chromatic aberration.
Zoom lenses may scatter more light through their more complicated optical systems than prime lenses, that is, lenses of fixed focal length; for example, an infrared photo taken with a 50mm prime lens may look more contrasty than the same image taken at 50mm with a 28–80 zoom.
Some lens manufacturers such as Leica never put IR index marks on their lenses. The reason for this is because any index mark is only valid for one particular IR filter and film combination, and may lead to user error. Even when using lenses with index marks, focus testing is advisable as there may be a large difference between the index mark and the subject plane.
[edit] Film cameras
Many conventional cameras can be used for infrared photography, where infrared is taken to mean light of a wavelength only slightly longer than that of visible light. Photography of rather longer wavelengths is normally termed thermography and requires special equipment.
With some patience and ingenuity, most film cameras can be used. However, some cameras of the 1990s that used 35mm film have infrared sprocket-hole sensors that can fog infrared film (their manuals may warn against the use of infrared film for this reason). Other film cameras are not completely opaque to infrared light.
[edit] Black-and-white infrared film
Black-and-white infrared negative films are sensitive to wavelengths in the 700 to 900 nm near infrared spectrum, and most also have a sensitivity to blue light wavelengths. The notable halation effect or glow often seen in the highlights of infrared photographs is an artifact of Kodak High Speed Infrared (HIE) black-and-white negative film and not an artifact of infrared light. The glow or blooming is caused by the absence of an anti-halation layer on the back side of Kodak HIE film, this results in a scattering or blooming around the highlights that would usually be absorbed by the anti-halation layer in conventional films.
The majority of black-and-white infrared art, landscape, and wedding photography is done using orange (15 or 21), red (23, 25, or 29) or visually opaque (72) filters over the lens to block the blue visible light from the exposure. The intent of filters in black-and-white infrared photography is to block blue wavelengths and allow infrared to pass through. Without filters, infrared negative films look much like conventional negative films because the blue sensitivity lowers the contrast and effectively counteracts the infrared look of the film. Some photographers use orange or red filters to allow slight amounts of blue wavelengths to reach the film, and thus lower the contrast. Very dark-red (29) filters block out almost all blue, and visually opaque (70, 89b, 87c, 72) filters block out all blue and also visible-red wavelengths, resulting in a more pure-infrared photo that usually looks more contrasty.
Certain infrared-sensitive films like Kodak HIE must only be loaded and unloaded in total darkness. Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film.
As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." see notice: http://www.kodak.com/global/en/professional/products/films/discontinuedNotice.jhtml?id=0.2.26.14.25&lc=en At the time of this notice, HIE Infrared 135-36 was available at a street price of around $12.00 a roll at US mail order outlets.
Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke's IR820 film has become the only IR film on the market with good sensitivity beyond 750nm, the Rollei film does extend beyind 750nm but IR sensitivity falls of very rapidly.
[edit] Color infrared film
Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a -blue (i.e., yellow) filter. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be loaded in total darkness (despite what it said on the can), or refocused to the infrared index mark on the lens.
In 2007 Kodak announced that production of the 35mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. It is assumed that the 70mm Aerographic format will continue.
There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production.
[edit] Digital cameras
Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently than visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras.[4] Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on your subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a 'hot spot' in the centre of the image as their coatings are optimised for visible light and not for IR.
An alternative method of digital SLR infrared photography is to remove the infrared blocker in front of the CCD and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally - handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared reflection.[5] When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography.
Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.
Several Sony cameras have the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was 'restricted' by Sony to make it difficult for people to take photos that saw through clothing[4]. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera's sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artefacts.
Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity.
Satellite sensors and thermographic cameras are sensitive to longer wavelengths of infrared, and use a variety of technologies which may not resemble common camera or filter designs. In particular, they often require cooling, since at these wavelengths, and room temperature, all objects (including the camera body, the optics, and the detector itself) are glowing all the time (see thermal radiation).
[edit] Cellphone
A Japanese company, Yamada Denshi, offers an IR camera attachment for some cellphones. But with this attachment, the cellphone camera can see through some types of clothing. For this reason,[citation needed] online retailers don't sell the attachment; it is available only from a few stores.
To protect people's privacy, given the potential availability of "see-through-clothing" cellphone cameras, one Japanese clothing company is producing underwear made with nylon and polyurethane that blocks infrared radiation.
[edit] Notes
- ^ Chemistry of Photography. Retrieved on 2006-11-28.
- ^ Pioneers of Invisible Radiation Photography - Professor Robert Williams Wood. Retrieved on 2006-11-28.
- ^ Annual Report of the Director Bureau of Standards to the Secretary of Commerce for the Fiscal Year Ended June 30, 1919 U. S. Govt. Print. Off., United States National Bureau of Standards, 1919.
- ^ a b Reuters wire service (1998-08-12). "Ultra-Personal Sony Handycam". Press release. Retrieved on 2007-02-09.
- ^ Digital Infrared at Jim Chen Photography
[edit] See also
[edit] External links
The external links in this article may not follow Wikipedia's content policies or guidelines. Please improve this article by removing excessive or inappropriate external links. |
- Infrared photography at the Open Directory Project
- Infrared Photography Gallery Holly Gollnick displays infrared photos taken in B&W and in digital false-color. (All filters 720nm - 900nm)
- All you ever wanted to know about digital UV and IR photography, but could not afford to ask
- Home Made Infrared Camera
- Digital infrared explanations, camera tests, conversion details and competition results
- Jeremy McCreary's infrared (IR) basics for digital photographers
- Gisle Hannemyr's Digital Infrared Resource Page will help you decide if your digital camera is IR-sensitive, and more
- Conversion instructions for the Canon G1
- Nature Photography Central - Digital IR tutorials for Nikon D70
- Digital infrared do it yourself conversion tutorials, services and infrared photo manipulation videos
- Infrared, gigapixel, spherical panorama
- The Billion Infrared Pixel Image Large-scale stitching and IR photography
- Digital Infrared Photography An introductory two-part article that also covers seldom discussed topics (e.g., diffraction, mirror lenses, polarizing filters, IR flash photography, etc).
- .:: GalleryHahn.com ::. A Beautiful Infrared Gallery by a the German photographer Philip Hahn, as well as some of his other work.
- MyInfrared.com Online digital infrared photography gallery.
- tarquinius.de EIR Color Infrared Film in Medium Format.