Talk:If and only if
From Wikipedia, the free encyclopedia
[edit] Initial Discussion
Someone should add the triple bar to the standard symbols for "iff." But I don't know how to do so.
Does this sentance need wikilinks really? Does pudding and Custard have anything at all to do with this article? I think not personally. -- 82.3.32.75 13:32, 21 Feb 2005 (UTC)
The equivalent of 'P is necessary and sufficient for Q' would be 'Q iff P' (not 'P iff Q') would it not? I've also wikilinked necessary and sufficient. - Ledge 11:18, 18 Aug 2003 (UTC)
- well... since it's symmetric, it doesn't really matter that much does it? -- Tarquin 11:38, 18 Aug 2003 (UTC)
Gosh, so it is. How have I lived so long without realising that?
- it should be symmetric, but the example below, which should show the difference between the equivalence and iff is not symmetric - actually the second part of the sentence (it's custart) is not even a sentence! This example is basicly wrong and it seems that the discusion of the mentioned difference is some (maybe polemic) lingual issue, but no logical nor mathematical, which (in this case) is the same. (Jester (not yet a user) 2:50, 9 Sep 2004)
"actually the second part of the sentence (it's custart) is not even a sentence!" It's == It is == subject(it) verb(is). Custard becomes a descriptive. Just thought I'd mention that.
Ark: Yes, a priest is a bachelor, at least as I understand the term. The Oxford English Dictionary says only that the man must be of marriageable age, which is arguably included in the term "man". Every American dictionary that I can find on the Net gives our original definition, possibly adding that age is irrelevant. If you have support for your definition, then I'd like to hear it; otherwise, I suggest returning the definition to what it was. OTOH, if controversy remains, we might look for a different definition to use. — Toby Bartels, Tuesday, June 18, 2002
- The priest-bachelor statement is is a prime example of Imprecise language... ;-) Tarquin, Tuesday, June 18, 2002
well, to my naive surprise, this is the necessary and sufficient article. But it doesn't go into the terms necessary and sufficient...or am I missing something? Kingturtle 02:35 Apr 18, 2003 (UTC)
- Well, I'm not sure. This is the iff article. It isn't clear it should go into the terms necessary and sufficient. But at the very least, necessary and sufficient are normally used in the sense of necessary condition and sufficient condition--I take it that's what you want. But the conjunction of those two is logical equivalence, which is not the same as iff (as explained in the article).
There was some confusing equivocation between use and mention here--between the biconditional, which is a connective and logical equivalence, which is a relation. I tried to clear it up, but it's a knotty topic.
- I'm not sure the current version doesn't "clear it up" too much in the opposite direction. There is a distinction sometimes, but often there is not in fact a distinction, and many formal logics use a single symbol to indicate both, not the two separate symbols (single- and double-barred <->) used in this article. Delirium 18:55 12 Jun 2003 (UTC)
currently, Necessary and sufficient redirects to Iff. Kingturtle 02:46 Apr 18, 2003 (UTC)
- I realized that, a bit later. I've written a brief article on it and eliminated the redirection. hope its helpful
I'm not sure I like the "iff is not equivalence" example:
- Mary will eat pudding today if and only if it's custard.
I think this actually is a case of equivalence, that is being muddled by the phrasing. What we're saying is "(Mary will eat pudding today) iff (The pudding today is a custard)". Thus the logical statements "Mary will eat pudding today" and "The pudding today is a custard" are in fact equivalent: they have identical truth tables. So I still don't see the discrepancy. --Delirium 22:58 12 Jul 2003 (UTC)
- I think you're right. It's bringing the meaning of the words into the matter, which is wrong -- Tarquin 10:19 13 Jul 2003 (UTC)
Regarding "if/iff" convention for defs:
I've reinserted the comment about "if" being used conventionally in math defs. I'm sorry, I've read a lot of math books, and this is a common convention. Many definitions use the terminology "if", in the sense of "If P(X), then X is called blah" or "X is said to be blah if P(X)", yet not every definition uses "iff", and all definitions are intended to be "iff", because that's what definitions are. (To counter your remark, definitions are not intended to assert equivalencies; an equivalence is usually meant to indicate a statement saying two things imply each other that has to be PROVED...definitions aren't proved, they're declared, so it doesn't make sense to say e.g. "'R is an integral domain' is equivalent to 'R is a commutative ring with identity'" because these statements aren't "equivalent" in the ordinary sense of the term, one does not PROVE they're equivalent, that simply IS the definition of an integral domain. Here are several cases where the "if" convention is used in the wikipedia itself...
- "A prime p is called primorial or prime-factorial if it has the form p = Π(n) ± 1 for some number n" (from prime number)
- "If a divides b and b divides a, then we say a and b are associated elements. a and b are associated if and only if there exists a unit u such that au = b." (from integral domain...notice, the first use of the word is in the sense of a definition, hence only "if" is used (although "iff" would be correct as well), but the second IS an actual theorem (result) because the equivalent condition requires proof. So, for the second statement, the meaning would change if "iff" were replaced by "if", although for the first statement it doesn't matter.
- "In complex analysis, a function is called entire if it is defined on the whole complex plane and is holomorphic everywhere" (from entire function).
The list could go on. Revolver
Im confused by the
-
- A person is a bachelor iff that person is an unmarried but marriagable man.
example -- there could be unmarried but marriagable men (not only the priests mentioned above), for example widowers. I wouldn't think they are bachelors (are they?). If not, the (P iff Q) Q->P direction isn't true. And what about bachelor being also a term for an university diploma? Is "Tom did his B.A. well and is now a Bachelor" a correct English sentence? And what about a marriaged Tom that is a Bachelor in this sense? Would he destroy the iff above? -- till we *) 00:31, 26 Jan 2004 (UTC)
What is the pronounciation of the "iff"? Do I say "if" or "if and only if"?
- I'd read "if and only if". I'm sure that's what my maths lecturers used to read, too. I guess you could say "eye eff eff". Saying "if" would be wrong. It's just a written shorthand, like using the three dots to mean therefore - you wouldn't read that as "dot dot dot". --JimmyTheWig 12:20, 31 May 2006 (UTC)
-
- I've heard it said "ifffff..." (that is, with an extended "f" sound). However, I think the users were using it more for comic effect than anything else. "If and only if" is the sensible way to say it out loud. -- The Anome 10:35, 3 October 2007 (UTC)
[edit] Coinage of "iff" by Kelley / Halmos
The article says:
- The abbreviation appeared in print for the first time in John Kelley's 1955 book General Topology.
However, the preface of the 1955 edition of General Topology says
- In some cases where mathematical content requires "if and only if" and euphony demands something less I use Halmos' "iff".
which suggests that he did get it from Halmos. Now Kelley did know Halmost personally so it's possible that this was the first appearance of "iff" in print. But it seems more likely that Kelley saw it in some paper of Halmos'. I can't think of any way to pursue this any further, other than to ask Halmos. (Kelley died in 1999.) Does anyone have any other suggestions? -- Dominus 05:39, 10 May 2004 (UTC)
[edit] Possibly useful references
[edit] "Precisely if"
Does the phrase "precisely if" mean the same thing as iff? If so, it could be added to the article. Wmahan. 17:56, 2004 Aug 31 (UTC)
- Yes; that is conventional usage among mathematicians (I don't know about philosophical logicians, though). Michael Hardy 20:55, 31 Aug 2004 (UTC)
Thanks. It appears to be used in logic as well (e.g. [3]), so I'll add it to the article. Wmahan. 06:34, 2004 Sep 1 (UTC)
I think the phrase "exactly when" is common also. -- Dominus 02:59, 2 Sep 2004 (UTC)
[edit] Orr?
I don't know about you, but I see "orr" and think of an imperative-logic "p' := q or r". Does anybody use "orr" for the exclusive disjunction rather than "xor"? --Damian Yerrick 08:23, 6 Sep 2004 (UTC)
- I use whichever one. But I have to use "xor" in Matlab cause that is what it requires in its syntax. --GoOdCoNtEnT 01:11, 10 July 2006 (UTC)
[edit] Organization
I wrote in Talk:Mathematical jargon, in part:
- Iff has two uses, imho. One is used in logic (and related fields, I suppose) to mean a binary function from a theory to a truth-value set
iff : Th x Th → {T,F}
- and the other is used in arguments in any math paper or lecture. The meanings are the same, I think, but the uses are different. I think that Iff should be edited to reflect these two uses; right now it blends them. —msh210 17:03, 9 Nov 2004 (UTC)
I still think so; what do you all think? —msh210 19:40, 15 Nov 2004 (UTC)
Done. —msh210 18:57, 17 Nov 2004 (UTC)
[edit] "P iff Q" not equal to "P is necessary and sufficient for Q"
In my opinion, there is a little mistake in this article... I think it should be vice versa: "P iff Q" means "Q is neseccary and sufficient for P" instead of "P is necessary and sufficient for Q" isn't it?
- Both are equally correct. -- Dominus 01:27, 6 Jun 2005 (UTC)
-
- Yeah, although the suggested change does match up a little better with colloquial English usage ("P if Q" means "Q is sufficient for P", and "P only if Q" means "Q is necessary for P", so "P iff Q" means "Q is necessary and sufficient for P"). --Delirium 03:03, Jun 8, 2005 (UTC)
-
-
- "P if Q" also means that P is necessary for Q, and "P only if Q" means that P is sufficient for Q. Thus, "P iff Q" means "P is necessary and sufficient for Q". I repeat, both are equally correct. -- Dominus 12:57, 8 Jun 2005 (UTC)
-
-
-
-
- Perhaps you missed my phrase "with colloquial English usage". In colloquial English usage, "P if Q" does not mean "P is necessary for Q", even though this is a logical consequence. --Delirium 23:27, 6 January 2007 (UTC)
-
-
-
-
-
-
- I disagree with your understanding of "colloquial English usage", but look forward to seeing your authoritative references, which I will expect around June of 2008. -- Dominus 22:02, 7 January 2007 (UTC)
-
-
-
[edit] Why is this page iff?
Wikipedia naming conventions states that the expanded form should be preferred unless a term is almost exclusively used as it's shorterned form (aka Scuba or Laser). So why is this page on Iff? — Ambush Commander(Talk) 21:48, 20 September 2005 (UTC)
[edit] ONLY IF instead of IFF, couldn't it be possible ?
IMHO, "ONLY IF" covers "IF", and "SUFFICIENT" includes "NECESSARY". Why doesn't one use "ONLY IF" instead of "IF AND ONLY IF", "SUFFICIENT" in the place of "NECESSARY AND SUFFICIENT" ? Seforadev 19:07, 21 November 2005 (UTC)
- Convention: argue with the academics and scholars out there. I'm pretty sure there's a reason, but I don't really know (I just know that they usually use if and only if in texts). — Ambush Commander(Talk) 02:45, 22 November 2005 (UTC)
- Sb said me the probable reason for those redundance was one needs REPETITION to emphasize the TWO clauses of the logical equivalence. Some other ones said NECESSARY CONDITION is for the 1st sense (=>), and SUFFICIENT CONDITION is for the 2nd (<=). I don't understand.Seforadev 02:54, 22 November 2005 (UTC)
- I don't know if anyone still cares, but "only if"/"sufficient" are generally considered different from "iff"/"necessary and sufficient." For example, for natural numbers n and m, n divides m only if m is greater than n. However, the converse is not always true. n divides m is sufficent to show that m is greater than n, but it is not a necessary condition. Generally "P only if Q" can be stated "Q is a necessary condition of P" or "P => Q." "P if Q" can be stated "If P then Q," "Q is a sufficient condition for P," or "Q => P." Josh 19:02, 25 March 2006 (UTC)
- I think it derives somehow from the formal English language. It is an agreed upon term among mathematicians and using "only if" would just cause confusion. --GoOdCoNtEnT 01:07, 10 July 2006 (UTC)
Absolutely! After some 20 years of pondering over this question, I suspect that mathematicians have only two (2) motives to use iff instead of only if. First, it is more chic to use an exotic expression; and second, they tend to regard an iff condition as having a mandatory character, for example: "an egg will get hard boiled iff it is cooked in boiling water for 5 or more minutes", meaning that it is mandatory to boil the egg for 5 or more minutes. This quality however, is entirely fictitious, as it is equivalent to say that an egg will get hard boiled only if it is cooked in boiling water for 5 or more minutes. Gosh, I hardly understand my own argument! Does someone else? --AVM 20:55, 22 July 2006 (UTC)
- Absolutely — wrong! "Iff" means "if and only if", not "only if". — Arthur Rubin | (talk) 21:35, 22 July 2006 (UTC)
-
- A only if B means only that A implies B. A if and only if B means that A implies B and B implies A. This is why there is a difference. "If and only if" applies only to those cases of A only if B where also B only if A. Example: a bird is a raven only if its feathers are black, but this does not exclude the possibilty of other birds with black feathers. Whereas, if a bird is a raven if its feathers are black means that any bird with black feathers is necessarily a raven. The combination of both, if and only if, would mean that every bird with black feathers is a raven, and that a bird is a raven only if its feathers are black. - Rainwarrior 07:50, 23 July 2006 (UTC)
-
-
- But that's senseless - in fact NOT every bird with black feathers is a raven. So the "if and only if"-senseless-redundant-expression would mean, by your definition, that on one hand, every black bird is a raven (which is clearly wrong), AND, besides, on the other hand, a bird is only a raven when it has got black feathers.
-
-
-
-
- You've missed the boat, buddy.
- (1) A bird is a raven only if it is black.
- (2) A bird is a raven if it is black.
-
-
-
-
-
- (1) just says that all ravens are black. And (2) just says that all black birds are ravens. Now then:
-
-
-
-
-
- (3) A bird is a raven if and only if (iff) it is black.
-
-
-
-
-
- Again, (3) and (2) are clearly false. But they are certainly meaningful (think about it: if they were meaningless (viz., senseless), how would you know they were false?).
- The biconditional can be understood. It's simply the conjunction of necessary and sufficient conditions.
- (4) A triangle is equilateral only if it has three equal angles.
- (5) A triangle is equiangular if its sides are of equal length.
-
-
-
-
-
- (Both true, BTW.)
- From (4) and (5) we get
- (6) A triangle is equilateral iff it is equiangular.
- Hopefully, you can see that (4),(5), and (6) don't "say" the same thing (in ::::answer to the charge of redundancy), nor are any of them "senseless".
-
-
- So, reading this has convinced me that my current adviser is correct and we should just use symbolic notation to write implication when we can. But conventionally,
- 1. "If P then Q" or "Q if P" means P => Q.
- 2. "P only if Q" means P => Q
- 3. "P if and only if Q" means P <==> Q
- One exception to rule one is the use of the "definitional" if in mathematics. "We say that a natural number n>1 is prime if it is divisible only by one and itself" really means that n is prime if and only if n > 1 and n is divisible only by one and itself. I think this is the only real exception unless someone is confused.142.151.143.163 04:09, 10 February 2007 (UTC)
- Could be there a difference in the interpretation of the expression "only if" dependent on language? I am not a native speaker of English and for the expression:
-
-
- (1) A bird is a raven only if it is black, I understand firstly that a black bird is a raven and secondly that a raven can be only black. The second part arises because the word "only" does not delete the expression "if it is". The word "only" is a constriction to the expression "if it is black" which prohibits the possibility to write for instance "red" instead of "black". Therefore I find that expression
-
- "A bird is a raven only if it is black" is false as
- "n divides m only if m is greater than n", for natural numbers n and m, is also false.
-
I think could be interesting to find out who was the first person in history, and in what language, using formally the expression "if and only if". My belief is that this expression comes from too much enthusiastic desire to emphasize the "only if" and not from the intention to do a logical conjunction between the conditionals "if" and "only if".--Amoralesm 04:11, 27 April 2007 (UTC)
[edit] Merge
- Seems reasonable. - Ekevu (talk) 17:19, 22 December 2005 (UTC)
- Possible problem is that the EQV redirect fits only Logical biconditional, and not if and only if Arthur Rubin | (talk) 23:20, 22 December 2005 (UTC)
- Object. I think the use of iff is frequent enough across the Wikipedia that, without redirects being able to redirect to anchors (eg to Logical biconditional#If and only if), that it would be confusing for many readers. This article is long enough to support itself on its own; I think a merge is unnecessary. — OwenBlacker 17:47, 22 March 2006 (UTC)
- Oppose merge. No need; above reasons. — goethean ॐ 17:50, 22 March 2006 (UTC)
- Oppose merge. There is a distinction between the logical biconditional (<->) and the logical equivalence (<=>). It's a really big deal to some schools of logic (Quine, etc.), who regard their confounding on a (sub-)par with use-mention confusions. It's a deal, but not such a big deal to many in the math community, who tend to use (<=>) for both, but they have a different way of handling the distinction between assertion and contemplation that makes the symbol used less of a problem, and the fact that they save the light arrow (->) for function notation leads many to use the amphisbane arrow (<->) for a one-to-one correspondence. There is currently a mess of confusion about this in WP generally, that will eventually have to be sorted out, so I recommend keeping the articles at arm's length for the time being. Jon Awbrey 20:32, 22 March 2006 (UTC)
- Oppose merge. It's true that logical biconditional uses iff, but iff has many applications outside of math, those of which logical biconditional doesn't have. For example, someone could say "I'll let you do that, but if and only if you do this favor for me first." The sentence wouldn't make sense if the person said: "I'll let you do that, but only if we use logical biconditional, and you do this favor for me first." To sum up my point: iff does not imply logical biconditional, although logical biconditional does imply iff. Thus, iff emcompasses too broad a meaning, and logical biconditional is a more specific thing; therefore they both deserve their own page. wickedspikes 01:00, 09 April 2006 (PST)
- Oppose merge. A strong mention of (reference link to) the biconditional is warranted, but they aren't so indistinct that the biconditional does not deserve its own page. Rainwarrior 15:56, 19 April 2006 (UTC)
- Comment If the articles are not merged, then the difference between iff and a logical biconditional needs to be explained in the articles. As they read now, I have a hard time seeing any difference. --PeR 07:49, 21 June 2006 (UTC)
- Oppose merge -- agree with wickedspikes. Also, it makes more sense for any casual use of if to redirect here than to logical biconditional. See: its usage in Null set. -- AlanH (not signed in) July 18 2006
- Oppose merge. There is a difference between iff and a logical biconditional -- iff ought to imply only a "necessary condition", but not a "sufficient condition". It is amusing how this subject, in contrast to other subjects in the field, is such a visible motive for controversy. Regards, AVM 21:20, 22 July 2006 (UTC)
[edit] How it works in logic
Here is how we use double arrow ↔, i.e. iff, in logic:
- 1- (A ↔ B) is a shorthand symbol for [(A → B) ∧ (B → A)]
- 2- (A only if B) equals to (A → B)
Eric 06:38, 30 March 2006 (UTC)
-
- No, (A only if B) equals (A → B); whatever follows the word "only if" is always the consequent, not the antecedent. --165.123.138.170 08:08, 10 April 2006 (UTC)
- [update] You are absolutely right. It was a typos. (A → B) is obviously the correct form of (A only if B). Then I corrected my comment. Thank you for pointing it out.
- Eric 22:07, 15 April 2006 (UTC)
[edit] suggested addition
I want to put in a brief note to include the formulation "just in case" which is commonly used in philosophy to mean "if and only if" even though the usual English meaning of "just in case" is "as a precaution against...", as in, e.g., "I took my umbrella just in case it started raining". This page redirects from "just in case" in the when you search for that phrase so I think it would be a useful addition. Davkal 22:22, 8 June 2006 (UTC)
- A similar construction popular in mathematics is "exactly when", as in "n is the sum of two odd integers exactly when it is even". McKay 04:31, 22 June 2006 (UTC)
I have added bothDavkal 13:22, 23 June 2006 (UTC)
'In case' is used very rarely but still go ahead and add it and other synonyms for iff. --GoOdCoNtEnT 01:08, 10 July 2006 (UTC)
[edit] The difference between if and iff
If the pudding is a custard, then Madison will eat it. Does Madison eat ALL custard pudding?
Let p="pudding is a custard", q="Madison will eat it"
p→q ⇔ q ∨ (¬p) ⇔ ¬( (¬q) ∧ p )
Colloquially, IF p THEN q ⇔ q OR NOT p ⇔ (NOT q AND p) is false
"If the pudding is a custard, then Madison will eat it ", hence "Madison won't eat it and it is custard" is false (she eats all custard pudding wherever they are, though she may eat non-custard ones too).
Corollary: Madison must be a very very fat lady, because she eats tons of custard pudding daily.
Proposal: Should we change the example to "If Madison eats pudding, then it is a custard" ? In this case, "it is not a custard and Madison eats it" is false: the only puddings she eats are pudding, but may exist some pudding that is not eaten by her.
Rjgodoy 16:21, 15 April 2007 (UTC)
[edit] WikiProject class rating
This article was automatically assessed because at least one WikiProject had rated the article as start, and the rating on other projects was brought up to start class. BetacommandBot 04:08, 10 November 2007 (UTC)
[edit] Bachelor
Isn't a widower an "unmarried but marriageable man."? He may have previously been married, but the death of his wife means that he is now of the class "unmarried men". There is a legal difference (at the least in the eyes of the Church of England), however, between a bachelor and a widower, so the statement that "A person is a bachelor iff that person is an unmarried but marriageable man" is incorrect - the person is a bachelor ONLY IF that person is an unmarried but marriageable man. --El Pollo Diablo (Talk) 13:52, 21 January 2008 (UTC)