Identric mean

From Wikipedia, the free encyclopedia

The Identric mean of two positive real numbers x,y is defined as:


\begin{matrix}
I(x,y)
&=&
\frac{1}{e}\cdot
\lim_{(\xi,\eta)\to(x,y)}
\sqrt[\xi-\eta]{\frac{\xi^\xi}{\eta^\eta}}
\\
&=&
\lim_{(\xi,\eta)\to(x,y)}
\exp\left(\frac{\xi\cdot\ln\xi-\eta\cdot\ln\eta}{\xi-\eta}-1\right)
\\
&=&
\begin{cases}
x & \mbox{if }x=y \\
\frac{1}{e} \sqrt[x-y]{\frac{x^x}{y^y}} & \mbox{else}
\end{cases}
\end{matrix}
.

It can be derived from the mean value theorem by considering the secant of the graph of the function x \mapsto x\cdot \ln x. It can be generalized to more variables according by the mean value theorem for divided differences.

[edit] See also