Image:Ice Age Temperature.png

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

[edit] Description

Expanded record of temperature change since the end of the last glacial period
Expanded record of temperature change since the end of the last glacial period
Extended record of  climate change during the last 5 Myr
Extended record of climate change during the last 5 Myr

This figure shows the Antarctic temperature changes during the last several glacial/interglacial cycles of the present ice age and a comparison to changes in global ice volume. The present day is on the left.

The first two curves shows local changes in temperature at two sites in Antarctica as derived from deuterium isotopic measurements (δD) on ice cores (EPICA Community Members 2004, Petit et al. 1999). The final plot shows a reconstruction of global ice volume based on δ18O measurements on benthic foraminifera from a composite of globally distributed sediment cores and is scaled to match the scale of fluctuations in Antarctic temperature (Lisiecki and Raymo 2005). Note that changes in global ice volume and changes in Antarctic temperature are highly correlated, so one is a good estimate of the other, but differences in the sediment record do no necessarily reflect differences in paleotemperature. Horizontal lines indicate modern temperatures and ice volume. Differences in the alignment of various features reflect dating uncertainty and do not indicate different timing at different sites.

The Antarctic temperature records indicate that the present interglacial is relatively cool compared to previous interglacials, at least at these sites. The Liesecki & Raymo (2005) sediment reconstruction does not indicate signifcant differences between modern ice volume and previous interglacials, though some other studies do report slightly lower ice volumes / higher sea levels during the 120 ka and 400 ka interglacials (Karner et al. 2001, Hearty and Kaufman 2000).

It should be noted that temperature changes at the typical equatorial site are believed to have been significantly less than the changes observed at high latitude.

This graph image should be recreated using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is already available, please upload it. After uploading an SVG, replace this template with template {{Vector version available|new image name.svg}} in this image.

العربية | Български | Català | Česky | Dansk | Deutsch | English | Esperanto | Español | Français | 한국어 | Italiano | Magyar | Lietuvių | Nederlands | 日本語 | Polski | Português | Română | Русский | Suomi | Svenska | Türkçe | Українська | Tiếng Việt | मराठी | ‪中文(繁體)‬ | ‪中文(简体)‬ | +/-

[edit] Copyright

This figure was produced by Robert A. Rohde from publicly available data and is incorporated into the Global Warming Art project.


Image from Global Warming Art

This image is an original work created for Global Warming Art.

Permission is granted to copy, distribute and/or modify this image under either:


Please refer to the image description page on Global Warming Art for more information

GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 only as published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "Text of the GNU Free Documentation License."

العربية | Català | Česky | Deutsch | English | Español | فارسی | Français | Italiano | 日本語 | Nederlands | ‪Norsk (bokmål)‬ | Polski | Português | Русский | Svenska | Türkçe | Tiếng Việt | ‪中文(简体)‬ | ‪中文(繁體)‬ | +/-

[edit] References

  • Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis J., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. (1999) Climate and Atmospheric History of the Past 420,000 years from the

Vostok Ice Core, Antarctica, Nature, 399, 429-436. [1]

EPICA community members (2004) Eight glacial cycles from an Antarctic ice core, Nature 429:6992, 623-628, doi:10.1038/nature02599. [2]

  • Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records, Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071. [3]
  • Hearty, P.J. and Kaufman, D.S. (2000) Whole-rock aminostratigraphy and Quaternary sea-level history of the Bahamas, Quaternary Research 54, 163-173.
  • D. B. Karner, J. Levine, B. P. Medeiros, R. A. Muller (2002) Constucting a Stacked Benthic δ18O Record, Paleoceanography 17:0, doi:10.1029/2001PA000667.


Dragons flight's Temperature Record Series
This figure is part of series of plots created by Dragons flight to illustrate
changes in Earth's temperature and climate across many different time scales.
Time Period: 25 yrs | 150 yrs | 1 kyr | 2 kyr | 12 kyr | 450 kyr | 5 Myr | 65 Myr | 500 Myr
For articles related to this topic see: Temperature record

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current22:51, 17 December 2005564×377 (27 KB)Saperaud (*'''Description:''' en:Image:{{subst:PAGENAME}} )