Hyperperfect number

From Wikipedia, the free encyclopedia

Divisibility-based
sets of integers
Form of factorization:
Prime number
Composite number
Powerful number
Square-free number
Achilles number
Constrained divisor sums:
Perfect number
Almost perfect number
Quasiperfect number
Multiply perfect number
Hyperperfect number
Superperfect number
Unitary perfect number
Semiperfect number
Primitive semiperfect number
Practical number
Numbers with many divisors:
Abundant number
Highly abundant number
Superabundant number
Colossally abundant number
Highly composite number
Superior highly composite number
Other:
Deficient number
Weird number
Amicable number
Friendly number
Sociable number
Solitary number
Sublime number
Harmonic divisor number
Frugal number
Equidigital number
Extravagant number
See also:
Divisor function
Divisor
Prime factor
Factorization
This box: view  talk  edit

In mathematics, a k-hyperperfect number (sometimes just called hyperperfect number) is a natural number n for which the equality n = 1 + k(σ(n) − n − 1) holds, where σ(n) is the divisor function (i.e., the sum of all positive divisors of n). A number is perfect iff it is 1-hyperperfect.

The first few numbers in the sequence of k-hyperperfect numbers are 6, 21, 28, 301, 325, 496, ... (sequence A034897 in OEIS), with the corresponding values of k being 1, 2, 1, 6, 3, 1, 12, ... (sequence A034898 in OEIS). The first few k-hyperperfect numbers that are not perfect are 21, 301, 325, 697, 1333, ... (sequence A007592 in OEIS).

Contents

[edit] List of hyperperfect numbers

The following table lists the first few k-hyperperfect numbers for some values of k, together with the sequence number in the On-Line Encyclopedia of Integer Sequences (OEIS) of the sequence of k-hyperperfect numbers:

k OEIS Some known k-hyperperfect numbers
1 A000396 6, 28, 496, 8128, 33550336, ...
2 A007593 21, 2133, 19521, 176661, 129127041, ...
3   325, ...
4   1950625, 1220640625, ...
6 A028499 301, 16513, 60110701, 1977225901, ...
10   159841, ...
11   10693, ...
12 A028500 697, 2041, 1570153, 62722153, 10604156641, 13544168521, ...
18 A028501 1333, 1909, 2469601, 893748277, ...
19   51301, ...
30   3901, 28600321, ...
31   214273, ...
35   306181, ...
40   115788961, ...
48   26977, 9560844577, ...
59   1433701, ...
60   24601, ...
66   296341, ...
75   2924101, ...
78   486877, ...
91   5199013, ...
100   10509080401, ...
108   275833, ...
126   12161963773, ...
132   96361, 130153, 495529, ...
136   156276648817, ...
138   46727970517, 51886178401, ...
140   1118457481, ...
168   250321, ...
174   7744461466717, ...
180   12211188308281, ...
190   1167773821, ...
192   163201, 137008036993, ...
198   1564317613, ...
206   626946794653, 54114833564509, ...
222   348231627849277, ...
228   391854937, 102744892633, 3710434289467, ...
252   389593, 1218260233, ...
276   72315968283289, ...
282   8898807853477, ...
296   444574821937, ...
342   542413, 26199602893, ...
348   66239465233897, ...
350   140460782701, ...
360   23911458481, ...
366   808861, ...
372   2469439417, ...
396   8432772615433, ...
402   8942902453, 813535908179653, ...
408   1238906223697, ...
414   8062678298557, ...
430   124528653669661, ...
438   6287557453, ...
480   1324790832961, ...
522   723378252872773, 106049331638192773, ...
546   211125067071829, ...
570   1345711391461, 5810517340434661, ...
660   13786783637881, ...
672   142718568339485377, ...
684   154643791177, ...
774   8695993590900027, ...
810   5646270598021, ...
814   31571188513, ...
816   31571188513, ...
820   1119337766869561, ...
968   52335185632753, ...
972   289085338292617, ...
978   60246544949557, ...
1050   64169172901, ...
1410   80293806421, ...
2772 A028502 95295817, 124035913, ...
3918   61442077, 217033693, 12059549149, 60174845917, ...
9222   404458477, 3426618541, 8983131757, 13027827181, ...
9828   432373033, 2797540201, 3777981481, 13197765673, ...
14280   848374801, 2324355601, 4390957201, 16498569361, ...
23730   2288948341, 3102982261, 6861054901, 30897836341, ...
31752 A034916 4660241041, 7220722321, 12994506001, 52929885457, 60771359377, ...
55848   15166641361, 44783952721, 67623550801, ...
67782   18407557741, 18444431149, 34939858669, ...
92568   50611924273, 64781493169, 84213367729, ...
100932   50969246953, 53192980777, 82145123113, ...

It can be shown that if k > 1 is an odd integer and p = (3k + 1) / 2 and q = 3k + 4 are prime numbers, then p²q is k-hyperperfect; Judson S. McCraine has conjectured in 2000 that all k-hyperperfect numbers for odd k > 1 are of this form, but the hypothesis has not been proven so far. Furthermore, it can be proven that if pq are odd primes and k is an integer such that k(p + q) = pq - 1, then pq is k-hyperperfect.

It is also possible to show that if k > 0 and p = k + 1 is prime, then for all i > 1 such that q = pip + 1 is prime, n = pi − 1q is k-hyperperfect. The following table lists known values of k and corresponding values of i for which n is k-hyperperfect:

k OEIS Values of i
16 A034922 11, 21, 127, 149, 469, ...
22 17, 61, 445, ...
28 33, 89, 101, ...
36 67, 95, 341, ...
42 A034923 4, 6, 42, 64, 65, ...
46 A034924 5, 11, 13, 53, 115, ...
52 21, 173, ...
58 11, 117, ...
72 21, 49, ...
88 A034925 9, 41, 51, 109, 483, ...
96 6, 11, 34, ...
100 A034926 3, 7, 9, 19, 29, 99, 145, ...

[edit] Further reading

[edit] Articles

  • Daniel Minoli, Robert Bear, Hyperperfect Numbers, PME (Pi Mu Epsilon) Journal, University Oklahoma, Fall 1975, pp. 153-157.
  • Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem; Vol. 4, No. 2, Dec 1978, pp. 277-302.
  • Daniel Minoli, Structural Issues For Hyperperfect Numbers, Fibonacci Quarterly, Feb. 1981, Vol. 19, No. 1, pp. 6-14.
  • Daniel Minoli, Issues In Non-Linear Hyperperfect Numbers, Mathematics of Computation, Vol. 34, No. 150, April 1980, pp. 639-645.
  • Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
  • Daniel Minoli, W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
  • Judson S. McCranie, A Study of Hyperperfect Numbers, Journal of Integer Sequences, Vol. 3 (2000), http://www.math.uwaterloo.ca/JIS/VOL3/mccranie.html

[edit] Books

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

[edit] External links