HOL Light

From Wikipedia, the free encyclopedia

HOL Light is a member of the HOL theorem prover family. Like the other members, it is a proof assistant for classical higher order logic. Compared with other HOL systems, HOL Light is intended to have relatively simple foundations.

[edit] Logical foundations

HOL Light is based on a formulation of type theory with equality as the only primitive concept. The primitive rules of inference are the following:

 \cfrac{\qquad }{ \vdash t = t} REFL reflexivity of equality
 \cfrac{\Gamma \vdash s = t \qquad \Delta \vdash t = u}
                 {\Gamma \cup \Delta \vdash s = u}
TRANS transitivity of equality
 \cfrac{\Gamma \vdash f = g \qquad \Delta \vdash x = y}
             {\Gamma \cup \Delta \vdash f(x) = g(y)}
MK_COMB congruence of equality
 \cfrac{\Gamma \vdash s = t}{\Gamma \vdash (\lambda x. s) = (\lambda x. t)}
ABS abstraction of equality
\cfrac{\qquad}{\Gamma \vdash (\lambda x. t) x = t}
BETA connection of abstraction and function application
 \cfrac{\qquad }{ \{p\} \vdash p}
ASSUME assuming p, prove p
 \cfrac{\Gamma \vdash p = q \qquad \Delta \vdash p}
             {\Gamma \cup \Delta \vdash q}
EQ_MP relation of equality and deduction
 \cfrac{\Gamma \vdash p \qquad \Delta \vdash q}
             {(\Gamma - \{q\}) \cup (\Delta - \{p\}) \vdash p = q}
DEDUCT_ANTISYM_RULE deduce equality from 2-way deducibility
 \cfrac{\Gamma[x_1,\ldots,x_n] \vdash p[x_1,\ldots,x_n]}
             {\Gamma[t_1,\ldots,t_n] \vdash p[t_1,\ldots,t_n]}
INST instantiate variables in assumptions and conclusion of theorem
 \cfrac{\Gamma[\alpha_1,\ldots,\alpha_n] \vdash p[\alpha_1,\ldots,\alpha_n]}
             {\Gamma[\tau_1,\ldots,\tau_n] \vdash p[\tau_1,\ldots,\tau_n]}
INST_TYPE instantiate type variables in assumptions and conclusion of theorem

This formulation of type theory is very close to the one described in section II.2 of Lambek & Scott (1986).

[edit] References

Lambek, J; P. J. Scott (1986). Introduction to Higher Order Categorical logic. Cambridge University Press. 

[edit] External links