HIST1H2BE

From Wikipedia, the free encyclopedia


Histone cluster 1, H2be
PDB rendering based on 1aoi.
Available structures: 1aoi, 1eqz, 1f66, 1hio, 1hq3, 1kx3, 1kx4, 1kx5, 1m18, 1m19, 1m1a, 1p34, 1p3a, 1p3b, 1p3f, 1p3g, 1p3i, 1p3k, 1p3l, 1p3m, 1p3o, 1p3p, 1s32, 1tzy, 1u35, 1zbb, 1zla, 2aro, 2cv5, 2f8n, 2fj7, 2hio, 2nzd
Identifiers
Symbol(s) HIST1H2BE; dJ221C16.8; H2B.h; H2B/h; H2BFH; H2BFN
External IDs OMIM: 602805 MGI2448383 HomoloGene84347
Orthologs
Human Mouse
Entrez 8344 319180
Ensembl n/a ENSMUSG00000062727
Uniprot n/a Q8CGP1
Refseq NM_003523 (mRNA)
NP_003514 (protein)
NM_178195 (mRNA)
NP_835502 (protein)
Location n/a Chr 13: 22.04 - 22.04 Mb
Pubmed search [1] [2]

Histone cluster 1, H2be, also known as HIST1H2BE, is a human gene.[1]

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a member of the histone H2B family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6.[1]

[edit] References

[edit] Further reading

  • Ohe Y, Hayashi H, Iwai K (1979). "Human spleen histone H2B. Isolation and amino acid sequence.". J. Biochem. 85 (2): 615–24. PMID 422550. 
  • Dobner T, Wolf I, Mai B, Lipp M (1992). "A novel divergently transcribed human histone H2A/H2B gene pair.". DNA Seq. 1 (6): 409–13. PMID 1768865. 
  • Albig W, Kioschis P, Poustka A, et al. (1997). "Human histone gene organization: nonregular arrangement within a large cluster.". Genomics 40 (2): 314–22. doi:10.1006/geno.1996.4592. PMID 9119399. 
  • Albig W, Doenecke D (1998). "The human histone gene cluster at the D6S105 locus.". Hum. Genet. 101 (3): 284–94. PMID 9439656. 
  • El Kharroubi A, Piras G, Zensen R, Martin MA (1998). "Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter.". Mol. Cell. Biol. 18 (5): 2535–44. PMID 9566873. 
  • Deng L, de la Fuente C, Fu P, et al. (2001). "Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones.". Virology 277 (2): 278–95. doi:10.1006/viro.2000.0593. PMID 11080476. 
  • Deng L, Wang D, de la Fuente C, et al. (2001). "Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA.". Virology 289 (2): 312–26. doi:10.1006/viro.2001.1129. PMID 11689053. 
  • Marzluff WF, Gongidi P, Woods KR, et al. (2003). "The human and mouse replication-dependent histone genes.". Genomics 80 (5): 487–98. PMID 12408966. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932. 
  • Cheung WL, Ajiro K, Samejima K, et al. (2003). "Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase.". Cell 113 (4): 507–17. PMID 12757711. 
  • Mungall AJ, Palmer SA, Sims SK, et al. (2003). "The DNA sequence and analysis of human chromosome 6.". Nature 425 (6960): 805–11. doi:10.1038/nature02055. PMID 14574404. 
  • Lusic M, Marcello A, Cereseto A, Giacca M (2004). "Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter.". EMBO J. 22 (24): 6550–61. doi:10.1093/emboj/cdg631. PMID 14657027. 
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334. 
  • Golebiowski F, Kasprzak KS (2007). "Inhibition of core histones acetylation by carcinogenic nickel(II).". Mol. Cell. Biochem. 279 (1-2): 133–9. doi:10.1007/s11010-005-8285-1. PMID 16283522. 
  • Zhu B, Zheng Y, Pham AD, et al. (2006). "Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation.". Mol. Cell 20 (4): 601–11. doi:10.1016/j.molcel.2005.09.025. PMID 16307923. 
  • Bonenfant D, Coulot M, Towbin H, et al. (2006). "Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry.". Mol. Cell Proteomics 5 (3): 541–52. doi:10.1074/mcp.M500288-MCP200. PMID 16319397. 
  • Beck HC, Nielsen EC, Matthiesen R, et al. (2006). "Quantitative proteomic analysis of post-translational modifications of human histones.". Mol. Cell Proteomics 5 (7): 1314–25. doi:10.1074/mcp.M600007-MCP200. PMID 16627869. 
  • Pavri R, Zhu B, Li G, et al. (2006). "Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II.". Cell 125 (4): 703–17. doi:10.1016/j.cell.2006.04.029. PMID 16713563. 
  • Kim SC, Sprung R, Chen Y, et al. (2006). "Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.". Mol. Cell 23 (4): 607–18. doi:10.1016/j.molcel.2006.06.026. PMID 16916647.