HIRA
From Wikipedia, the free encyclopedia
HIR histone cell cycle regulation defective homolog A (S. cerevisiae)
|
||||||||||||||
PDB rendering based on 2i32. | ||||||||||||||
Available structures: 2i32 | ||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | HIRA; DGCR1; TUP1; TUPLE1 | |||||||||||||
External IDs | OMIM: 600237 MGI: 99430 HomoloGene: 48172 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 7290 | 15260 | ||||||||||||
Ensembl | ENSG00000100084 | ENSMUSG00000022702 | ||||||||||||
Uniprot | P54198 | Q3TFY0 | ||||||||||||
Refseq | NM_003325 (mRNA) NP_003316 (protein) |
NM_001005228 (mRNA) NP_001005228 (protein) |
||||||||||||
Location | Chr 22: 17.7 - 17.8 Mb | Chr 16: 18.79 - 18.88 Mb | ||||||||||||
Pubmed search | [1] | [2] |
HIR histone cell cycle regulation defective homolog A (S. cerevisiae), also known as HIRA, is a human gene.[1]
The specific function of this gene has yet to be determined; however, it has been speculated to play a role in transcription regulation and/or chromatin and histone metabolism. It is considered the primary candidate gene in some haploinsufficiency syndromes such as DiGeorge syndrome, and insufficient production of the gene may disrupt normal embryonic development. This gene is mapped to 22q11.21, centromeric to COMT.[1]
[edit] References
[edit] Further reading
- Lamour V, Lécluse Y, Desmaze C, et al. (1995). "A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region.". Hum. Mol. Genet. 4 (5): 791–9. PMID 7633437.
- Halford S, Wadey R, Roberts C, et al. (1994). "Isolation of a putative transcriptional regulator from the region of 22q11 deleted in DiGeorge syndrome, Shprintzen syndrome and familial congenital heart disease.". Hum. Mol. Genet. 2 (12): 2099–107. PMID 8111380.
- Lorain S, Demczuk S, Lamour V, et al. (1996). "Structural Organization of the WD repeat protein-encoding gene HIRA in the DiGeorge syndrome critical region of human chromosome 22.". Genome Res. 6 (1): 43–50. PMID 8681138.
- Llevadot R, Scambler P, Estivill X, Pritchard M (1997). "Genomic organization of TUPLE1/HIRA: a gene implicated in DiGeorge syndrome.". Mamm. Genome 7 (12): 911–4. PMID 8995764.
- Lorain S, Quivy JP, Monier-Gavelle F, et al. (1998). "Core histones and HIRIP3, a novel histone-binding protein, directly interact with WD repeat protein HIRA.". Mol. Cell. Biol. 18 (9): 5546–56. PMID 9710638.
- Magnaghi P, Roberts C, Lorain S, et al. (1998). "HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3.". Nat. Genet. 20 (1): 74–7. doi: . PMID 9731536.
- Hall C, Nelson DM, Ye X, et al. (2001). "HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-cdk2 substrate whose expression blocks S-phase progression.". Mol. Cell. Biol. 21 (5): 1854–65. doi: . PMID 11238922.
- Lorain S, Lécluse Y, Scamps C, et al. (2001). "Identification of human and mouse HIRA-interacting protein-5 (HIRIP5), two mammalian representatives in a family of phylogenetically conserved proteins with a role in the biogenesis of Fe/S proteins.". Biochim. Biophys. Acta 1517 (3): 376–83. PMID 11342215.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Lehner B, Sanderson CM (2004). "A protein interaction framework for human mRNA degradation.". Genome Res. 14 (7): 1315–23. doi: . PMID 15231747.
- Collins JE, Wright CL, Edwards CA, et al. (2005). "A genome annotation-driven approach to cloning the human ORFeome.". Genome Biol. 5 (10): R84. doi: . PMID 15461802.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Gocke CB, Yu H, Kang J (2005). "Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates.". J. Biol. Chem. 280 (6): 5004–12. doi: . PMID 15561718.
- Zhang R, Poustovoitov MV, Ye X, et al. (2005). "Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA.". Dev. Cell 8 (1): 19–30. doi: . PMID 15621527.
- Ahmad A, Kikuchi H, Takami Y, Nakayama T (2005). "Different roles of N-terminal and C-terminal halves of HIRA in transcription regulation of cell cycle-related genes that contribute to control of vertebrate cell growth.". J. Biol. Chem. 280 (37): 32090–100. doi: . PMID 16024922.
- Tang Y, Poustovoitov MV, Zhao K, et al. (2006). "Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly.". Nat. Struct. Mol. Biol. 13 (10): 921–9. doi: . PMID 16980972.
- Zhang R, Chen W, Adams PD (2007). "Molecular dissection of formation of senescence-associated heterochromatin foci.". Mol. Cell. Biol. 27 (6): 2343–58. doi: . PMID 17242207.