Highly abundant number

From Wikipedia, the free encyclopedia

Divisibility-based
sets of integers
Form of factorization:
Prime number
Composite number
Powerful number
Square-free number
Achilles number
Constrained divisor sums:
Perfect number
Almost perfect number
Quasiperfect number
Multiply perfect number
Hyperperfect number
Superperfect number
Unitary perfect number
Semiperfect number
Primitive semiperfect number
Practical number
Numbers with many divisors:
Abundant number
Highly abundant number
Superabundant number
Colossally abundant number
Highly composite number
Superior highly composite number
Other:
Deficient number
Weird number
Amicable number
Friendly number
Sociable number
Solitary number
Sublime number
Harmonic divisor number
Frugal number
Equidigital number
Extravagant number
See also:
Divisor function
Divisor
Prime factor
Factorization
This box: view  talk  edit

In mathematics, a highly abundant number is a natural number where the sum of its divisors (including itself) is greater than the sum of the divisors of any natural number less than it.

Highly abundant numbers and several similar classes of numbers were first introduced by Pillai (1943), and early work on the subject was done by Alaoglu and Erdős (1944). Alaoglu and Erdős tabulated all highly abundant numbers up to 104, and showed that the number of highly abundant numbers less than any N is at least proportional to log2 N. They also proved that 7200 is the largest powerful highly abundant number, and therefore the largest highly abundant number with odd sum of divisors.

[edit] Formal definition and examples

Formally, a natural number n is called highly abundant if and only if for all natural numbers m < n,

σ(n) > σ(m)

where σ denotes the sum-of-divisors function. The first few highly abundant numbers are

1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, ... (sequence A002093 in OEIS).

For instance, 5 is not highly abundant because σ(5) = 5+1 = 6 is smaller than σ(4) = 4+2+1 = 7, while 8 is highly abundant because σ(8) = 8+4+2+1 = 15 is larger than all previous values of σ.

[edit] Relations with other sets of numbers

Some sources report that all factorials are highly abundant numbers, but this is incorrect.

σ(9!) = σ(362880) = 1481040,

but there is a smaller number with larger sum of divisors,

σ(360360) = 1572480,

so 9! is not highly abundant.

Alaoglu and Erdős noted that all superabundant numbers are highly abundant, and asked whether there are infinitely many highly abundant numbers that are not superabundant. This question was answered affirmatively by Nicolas (1969).

Despite the terminology, not all highly abundant numbers are abundant numbers. In particular, none of the first seven highly abundant numbers are abundant.

[edit] References

Languages