Highest weight representation and lowest weight representation

From Wikipedia, the free encyclopedia

In representation theory, the space of all possible weights is a vector space. Let's fix a total ordering of this vector space such that a nonnegative linear combination of positive vectors with at least one nonzero coefficient is another positive vector.

Then, a representation is said to have highest weight λ if λ is a weight and all its other weights are less than λ.

Similarly, it is said to have lowest weight λ if λ is a weight and all its other weights are greater than it.

This algebra-related article is a stub. You can help Wikipedia by expanding it.