Hexacode

From Wikipedia, the free encyclopedia

In coding theory, the hexacode is length 6 linear code of dimension 3 over the Galois field GF(4) = {0,1,ω,ω2} of 4 elements defined by

H=\{(a,b,c,f(1),f(\omega),f(\omega^2) : f(x):=ax^2+bx+c; a,b,c\in GF(4)\}.

Then H contains 45 codewords of weight 4, 18 codewords of weight 6 and the zero word. The full automorphism group of the hexacode is 3.S6. The hexacode can be used to describe the Miracle Octad Generator of R. T. Curtis.

[edit] References