Heine's identity
From Wikipedia, the free encyclopedia
In mathematical analysis, Heine's identity, named after Heinrich Eduard Heine[1] is a Fourier expansion of a reciprocal square root which Heine presented as
where[2] is a Legendre function of the second kind, which has degree, m − 1/2, a half-integer, and argument, z, real and greater than one. This expression can be generalized[3] for arbitrary half-integer powers as follows
where is the Gamma function.
[edit] References
- ^ Heine, Heinrich Eduard (1881). Handbuch der Kugelfunctionen, Theorie und Andwendungen. Physica-Verlag. (See page 286)
- ^ Cohl, Howard S.; J.E. Tohline, A.R.P. Rau;H.M. Srivastava (2000). "Developments in determining the gravitational potential using toroidal functions". Astronomische Nachrichten 321 (5/6): 363–372. doi: . ISSN 0004-6337.
- ^ Cohl, H. S. (2003). "Portent of Heine's Reciprocal Square Root Identity". 3D Stellar Evolution, ASP Conference Proceedings, held 22-26 July 2002 at University of California Davis, Livermore, California, USA. Edited by Sylvain Turcotte, Stefan C. Keller and Robert M. Cavallo 293.