Heine's identity

From Wikipedia, the free encyclopedia

In mathematical analysis, Heine's identity, named after Heinrich Eduard Heine[1] is a Fourier expansion of a reciprocal square root which Heine presented as

\frac{1}{\sqrt{z-\cos\psi}}=\frac{\sqrt{2}}{\pi}\sum_{m=-\infty}^\infty Q_{m-\frac12}(z) e^{im\psi}

where[2]  Q_{m-\frac12} is a Legendre function of the second kind, which has degree, m − 1/2, a half-integer, and argument, z, real and greater than one. This expression can be generalized[3] for arbitrary half-integer powers as follows

(z-\cos\psi)^{n-\frac12}=\sqrt{\frac{2}{\pi}}\frac{(z^2-1)^{\frac{n}{2}}}{\Gamma(\frac12-n)}
\sum_{m=-\infty}^{\infty}\frac{\Gamma(m-n+\frac12)}{\Gamma(m+n+\frac12)}Q_{m-\frac12}^n(z)e^{im\psi},

where \scriptstyle\,\Gamma is the Gamma function.

[edit] References

  1. ^ Heine, Heinrich Eduard (1881). Handbuch der Kugelfunctionen, Theorie und Andwendungen. Physica-Verlag.  (See page 286)
  2. ^ Cohl, Howard S.; J.E. Tohline, A.R.P. Rau;H.M. Srivastava (2000). "Developments in determining the gravitational potential using toroidal functions". Astronomische Nachrichten 321 (5/6): 363–372. doi:10.1002/1521-3994(200012)321:5/6<363::AID-ASNA363>3.0.CO;2-X. ISSN 0004-6337. 
  3. ^ Cohl, H. S. (2003). "Portent of Heine's Reciprocal Square Root Identity". 3D Stellar Evolution, ASP Conference Proceedings, held 22-26 July 2002 at University of California Davis, Livermore, California, USA. Edited by Sylvain Turcotte, Stefan C. Keller and Robert M. Cavallo 293.