Image:Heatequation exampleB.gif

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

Contents

[edit] General Audience Description

Here the horizontal axis represents the location along a bar of metal and the graph records the temperature at that location. It begins with an initial temperature which is hot at one side and cool at the other, and then shows how the temperature of the bar approaches an equilibrium. It is assumed that no heat is lost from the bar and that there are no heat sources. This demonstrates two key properties of the heat equation: approaching an equilibrium, and the maximum principle. The maximum principle says that the temperature will always have a maximum either earlier in time or at the ends of the bar.

[edit] Summary

Graphical representation of the solution to the heat equation for an "infinite slab" of width 1 given by:

\ u_t = ku_{xx}

where k = .061644 subject to the boundary conditions:

u_x(0,t) = 0,\ \ u_x(1,t)=0

and with the initial heat distribution given by:

\ u(x,0) = \cos(2x)

In this case, the left face (x=0) and the right face (x=1) are perfectly insulated. This image shows how the heat redistributes, flowing from the warmer left edge to the cooler right edge, then equalizing to a constant temperature throughout. This temperature happens to be the average value of cos(2x) over [0,1], as one might expect.

The solution:

u(x,t) = \frac{\sin(2)}{2} + \sum_{n=1}^{\infty}A_n \cos\left(n \pi x\right) \exp\left(-k n^2 \pi^2 t\right)

where:

\begin{align}
A_n &= 2 \int_0^1 \cos(2x) \cos(n \pi x) dx \\
       &= (-1)^n \frac{-4 \sin(2)}{n^2 \pi^2-4} \\
\end{align}

[edit] Solution Details

This solution was obtained using separation of variables.

[edit] Source Code

Mathematica Source:

j = 10;
k = .061644;

A[n_] := (-4 (-1)^n* Sin[2])/(-4 + n^2*Pi^2);

u[x_, t_] := Sin[2]/2 + Sum[A[n]*Cos[n*Pi*x]*Exp[-k(n*Pi)^2*t], {n, 1, j}];

For[i = 0, i <= 12, i += .1,
  Plot[u[x, i], {x, 0, 1},
    Prolog -> {Line[{{0, 1}, {1, 1}, {1, 1}, {1, 0}}]},
    PlotRange -> {0, 1},
    AxesLabel -> {"x", "u=temp"},
    PlotLabel -> {i}
    ]
]

[edit] Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation license, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation license".

Aragonés | العربية | Asturianu | Български | বাংলা | ইমার ঠার/বিষ্ণুপ্রিয়া মণিপুরী | Brezhoneg | Bosanski | Català | Cebuano | Česky | Dansk | Deutsch | Ελληνικά | English | Esperanto | Español | Eesti | Euskara | فارسی | Suomi | Français | Gaeilge | Galego | עברית | Hrvatski | Magyar | Bahasa Indonesia | Ido | Íslenska | Italiano | 日本語 | ქართული | ភាសាខ្មែរ | 한국어 | Kurdî / كوردی | Latina | Lëtzebuergesch | Lietuvių | Bahasa Melayu | Nnapulitano | Nederlands | ‪Norsk (nynorsk)‬ | ‪Norsk (bokmål)‬ | Occitan | Polski | Português | Română | Русский | Slovenčina | Slovenščina | Shqip | Српски / Srpski | Svenska | తెలుగు | ไทย | Türkçe | Українська | اردو | Tiếng Việt | Volapük | Yorùbá | ‪中文(中国大陆)‬ | ‪中文(台灣)‬ | +/-

Some rights reserved
Creative Commons Attribution iconCreative Commons Share Alike icon
This file is licensed under the Creative Commons Attribution ShareAlike license versions 2.5, 2.0, and 1.0

العربية | Български | Català | Česky | Dansk | Deutsch | English | Español | Euskara | فارسی | Français | עברית | Italiano | 日本語 | 한국어 | Lietuvių | Nederlands | Polski | Português | Русский | Svenska | தமிழ் | Türkçe | 中文 | 中文 | +/-

You may select the license of your choice.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current22:01, 17 April 2007288×177 (30 KB)Wtt
21:35, 13 April 2007288×177 (29 KB)Wtt (== Summary == Graphical representation of the solution to the heat equation for a "slab" of width 1 given by: :<math>\ u_t = ku_{xx}</math> subject to the boundary conditions: :<math>u_x(0,t) = 0,\ \ u_x(1,t)=0</math> and with the initial heat distribu)
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):