Hawkins Electrical Guide
From Wikipedia, the free encyclopedia
The Hawkins Electrical Guide was a technical engineering book published in 1917, intended for the common man to understand highly complex principles of every manner of electric device. The book is notable for the extremely high number of detailed illustrations it contains, and the small softbound size of the volumes.
The book was published by Theodore Audel & Company, and the majority of the illustrative content became the basis of decades of followup books published under the Audels brand name. The illustrative content of these books can still be found in Audels books sold new today.
Because the Hawkins Electrical Guide was printed in the United States prior to 1923, the content of the books has passed into the public domain.
Contents |
[edit] Illustrations from Volume 1
[edit] Chapter 14: The Dynamo: Current Commutation
Page 174, Figure 182 Main Wikipedia article: Gramme machine Description: Separate excitation of an electric generator. DC generator with commutation is shown, but the principle also applies to AC alternators. |
Page 175, Figure 183 Main Wikipedia article: Gramme machine Description: A one pole, two coil Gramme ring. The second coil is wired in series with the first and the voltage of both is added together. |
Page 177, Figure 185 Main Wikipedia article: Gramme machine Description: A four coil Gramme ring. The coils of A and A' sum together as do the coils of B and B', producing two pulses of power 90 degrees out of phase with each other. When coils A and A' are at maximum output, coils B and B' are at zero output. |
Page 178, Figure 186 Main Wikipedia article: Gramme machine Description: A three pole, six coil Gramme ring, and a graph of the combined three poles, each 120 degrees out of phase from the other and summing together. |
[edit] Chapter 15: Classes of Dynamo
Page 183 Main Wikipedia article: Excitation (magnetic) Description: A self-excited shunt-wound DC generator is shown on the left, and a magneto DC generator with permanent field magnets is shown on the right. The shunt-wound generator output varies with the current draw, while the magneto output is steady regardless of load variations. |
Page 196 Main Wikipedia article: Excitation (magnetic) Description: A separately excited DC generator with bipolar field magnets. Separately excited generators like this are commonly used for large-scale power transmission plants. The smaller generator can be either a magneto with permanent field magnets or another self-excited generator. |
[edit] Chapter 16: Field Magnets
Page 200, Figure 201 Main Wikipedia article: Field coil Description: Salient pole, bipolar field, series-wound DC generator. |
Page 201, Figure 203 Main Wikipedia article: Field coil Description: Consequent pole, bipolar field, series-wound DC generator. |
Page 202, Figure 206 Main Wikipedia article: Field coil Description: Consequent pole, four-field, shunt-wound DC generator |
[edit] Chapter 17: The Armature
Page 223 Main Wikipedia article: Gramme machine Description: Early form of the Gramme ring armature with coils penetrating the interior of the ring. |
Page 224 Main Wikipedia article: Gramme machine Description: Modern design of the Gramme ring, wrapped only around the exterior of the core. |
Page 225 Main Wikipedia article: Gramme machine Description: Diagram of magnetic lines through a Gramme ring, showing the very few magnetic lines of force crossing the center gap. |
Page 226 Main Wikipedia article: Gramme machine Description: Example of a single winding around the exterior of a drum core with no wires penetrating the interior. |
[edit] Chapter 19: Theory of the Armature
Page 264 Main Wikipedia article: Commutator (electric) Description: Exaggerated example of how the field is distorted by the rotor. |
Page 265 Main Wikipedia article: Commutator (electric) Description: Iron filings show the distorted field across the rotor. |
Page 281 Main Wikipedia article: Field coil Description: Field lines of a four-pole stator passing through a Gramme ring or drum rotor. |
[edit] Chapter 20: Commutation and the Commutator
Page 284< Main Wikipedia article: Commutator (electric) Description: In a dynamo, the contact point of where a pair of brushes touch the commutator is referred to as the commutating plane. In this diagram the commutating plane is shown for just one of the brushes. |
Page 285 Main Wikipedia article: Commutator (electric) Description: Centered position of the commutating plane if there were no field distortion effects. |
Page 286 Main Wikipedia article: Commutator (electric) Description: Actual position of the commutating plane to compensate for field distortion. |
Page 301, Figure 328 Main Wikipedia article: Electrical generator Description: Dynamos are no longer used for power generation due to the size and complexity of the commutator needed for high power applications. This large belt-driven high-current dynamo produced 310 amperes at 7 volts, or 2,170 watts, when spinning at 1400 RPM. |
[edit] Illustrations from Volume 2
[edit] Chapter 35: Operation of Motors
Page 669 Main article: Brushed DC Electric Motor Description: 1917 DC motor manual starting rheostat, with no-voltage and overload release features. |
[edit] Illustrations from Volume 4
[edit] Chapter 46: Alternating Currents
Page 669, Figure 1253 Main article: Two phase Description: A simplified diagram of a two-phase alternator |
Page 1026, Figure 1260 Main article: Three phase Elementary six-wire three-phase alternator, with each phase using a separate pair of transmission wires. |
Page 1026, Figure 1261 Main article: Three phase Description: Elementary three-wire three-phase alternator, showing how the phases can share only three transmission wires |
[edit] Illustrations from Volume 7
[edit] Chapter 66, Power Stations
Page 1979 Main article: Electric generator Description: A 50,000 - 100,000 KVA direct-driven power station AC alternator with a separate belt-driven exciter generator. |