User:Hal Canary/Draft of Trig Identities

From Wikipedia, the free encyclopedia

Interstingly, all the main Trigonometric functions can be defined in terms of sine and the square root function.

\cos \theta = \sqrt{1-\sin ^2 \theta }

\tan \theta = \frac{\sin \theta}{\sqrt{1-\sin ^2 \theta}}

\cot \theta = \frac{\sqrt{1-\sin ^2 \theta}}{\sin \theta}

\sec \theta = \frac{1}{\sqrt{1-\sin ^2 \theta }}

\csc \theta = \frac{1}{\sin \theta }

Similarly, the inverse trigonometric functions can easily be defined in terms of one of them---for example, the arctangent function.

\arcsin(x) = \arctan\left({\frac{x}{\sqrt{1 - x^2}}}\right)

\arccos(x) = \arctan\left({\frac{\sqrt{1-x^2}}{x}}\right)

\arcsec(x) = \arctan\left({\sqrt{x^2-1}}\right)

\arccsc(x) = \arctan\left({\frac{1}{\sqrt{x^2-1}}}\right)

\arccot(x) = \arctan\left({\frac{1}{x}}\right)