Haematobia irritans
From Wikipedia, the free encyclopedia
This animal article requires clean up to conform to a higher standard of quality. See Wikipedia:How to edit a page and Category:Wikipedia help for help, or this article's talk page. |
Haematobia irritans | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scientific classification | ||||||||||||||
|
||||||||||||||
Binomial name | ||||||||||||||
Haematobia irritans (Linnaeus, 1758) |
Haematobia irritans, the horn fly, is a small fly (about half the size of a common housefly) of the genus Haematobia which is the European genus of bloodsucking flies. Haematobia irritans is a native of Europe but has been introduced to North America and is considered a potentially dangerous livestock pest.
Contents |
[edit] Appearance
H. irritans is the smallest of the biting muscids, gray in color, approximately 3⁄16 in (4.0 mm) in length. Both the male and female have slender, black, piercing mouthparts which project forward from the bottom of the head. They often aggregate densely on cattle, each fly oriented with its head in the same direction as hair tips of that site on the host. Horn flies typically have eyes that are dark reddish-brown.
[edit] Egg laying, habitat and feeding
The horn fly lays eggs in fresh cow manure, and the female is known to laying her eggs in the feces before the cow has even completed defecation.
The larvae remain in fresh pats of the animal's dung and feed on the both the resident bacterium and the compositions of the decomposition products of the resident bacterium.
The adult, on finding a suitable host, remain on it and others in the same herd for life, with the female only leaving to lay her eggs. Horn flies will also move around to different areas on the same animal to regulate their temperature and minimize their exposure to the wind. Both the male and the female subsist completely on blood, using their sharp mouthparts to pierce the animal's hide to suck it out.
Males typically feed around 20 times and females around 40 times daily, and when not feeding they tend to rest around the horn region of the host.
[edit] Stages of development
The horn fly undergoes complete metamorphosis, and has four major stages of development:
The first stage is the egg, which is laid in fresh feces, and hatches quickly. The resulting larval (maggot) stage, which consists of three larval instars (wingless), develops quickly and can last as little as four days. This is followed by the still immature pupa stage (also wingless) which lasts around six to eight days. and finally the mature, winged adult stage.
Generational time may be as little as ten days under ideal conditions, but under less favorable circumstances can average between 14 to 18 days.
[edit] Danger to livestock
The horn fly, as can be gleaned from its taxonomic designation Haematobia irritans, is an irritant to livestock. Beyond this, incessant biting is compounded by loss of blood, and results in such detrimental effects on host physiology as to include reduction in milk production, efficiency, and rate of gain. If the host is infested with a large number of flies, the resulting skin irritation and wounds may result in the drawing of a secondary infestation of myasis producing flies. There is some controversy over whether the horn fly is a disease vector, with at least one source asserting that the flies can be an intermediate host of Stephanofilaria stilesi, a parasite of cattle in North America.
[edit] Domestic animals affected
Primarily livestock (specifically cattle) but is known to feed on horses, sheep and goats, albeit to a lesser extent.
[edit] Range
The horn fly is known as a strong flier, and upon emerging as adults they can fly up to 10 miles to find a host. However, most often a horn fly will not have to fly more than three miles to find a host.
[edit] Seasonality and locality
Found primarily in and around the states surrounding Kansas. Haematobia irritans is not native to the U.S. and originally came from Europe. It can live in any similarly climatized area, as evidenced by its most recent spread to Argentina and Uruguay. In the U.S., the active time of the horn fly is between April and October and, in a warm fall, even as late as mid-November. The flies are often most abundant from June through mid-July with a second population peak in mid-to-late August.
[edit] Management
Due to the level of damage an infestation can result in, much has been done over the years in the effort to manage, reduce, and eliminate the horn fly. Traditional methods were through the use of pour-ons, backrubbers and face powder bags, with products such as Co-Ral which is available as dust for face/horn flies. Self-applicator methods such as dust bags and backrubbers are used mainly for range or pasture herds, and are placed so that the animal cannot avoid coming into contact with it, such as at a gate through which animals pass. More recently, control of the horn fly by using ear tags on cattle has been extremely successful. The ear tags are comprised of a PVC matrix impregnated with pyrethroid, and can be effective for between 16 to 24 weeks. Originally, the ear tags were developed and used against such pests as ticks and by 1983 50% of cattle had ear tags. Long periods of such dosing resulted in the elimination of 95-99% of susceptible flies, but this strong selection pressure ended up resulting in the development of resistant strains of the flies. To combat this, the use of organophosphates and piperonyl butoxide as a synergist are now recommended to be alternated with pyrethroid to help slow resistance. In addition, methoprene in the form of sustained release bolus (a rounded mass of food or pharmaceutical preparation ready to swallow) inhibits the emergence of an adult insect from a pupal case or an insect larvaa from an egg for up to 7 months.
[edit] Mutations and known variations
A white-eyed "albino" horn fly was discovered in a colony maintained at the Knipling-Bushland U.S. Livestock Insects Research Laboratory in Kerrville, Texas. This is apparently a spontaneous mutation, as tests including crosses were performed that determined the white-eye mutation was not sex-linked and the white-eyed flies actually have decreased amounts of eye pigment present within the head. This appears to be an inherited simple Mendelian autosomal recessive with complete penetrance. A colony of white-eyed horn flies was established from this single individual and has been maintained in the laboratory as visible genetic markers such as an eye color mutation in an economically important species like the horn fly may be useful for behavior and population dynamic studies, as well as release and recapture studies. No other differences from the wild-type flies were detected in the external characteristics of the mutant phenotype or in egg viability. However, white-eyed flies had significantly lower amounts of the pigment dihydroxyxanthommatin in their heads suggesting either the lack of xanthommatin production, or a failure of transport and storage within the head of the mutant phenotype.