Talk:Group extension
From Wikipedia, the free encyclopedia
[edit] Move proposal
I propose this article be moved to group extension, which already redirects here and doesn't require disambiguation. Deco 17:42, 9 December 2005 (UTC)
I think some disambiguation is nesessary, but only as a redirect. That doesn't change the fact that this article is a stub; I believe it should be merged into the main topic Algebraic extension. I know that an extension and an algebraic extension are different things, but it would help those reading algebraic extension, if they knew what an extension was first, and simply linking it at the end of this piddly little thing is more of a "Would you like to know more?" than a "See also." IMHO. Sim 01:53, 1 April 2006 (UTC)
- I guess I think it's true that extension (algebra) is the wrong title for this article, group extension is the right title. I will now move it. On the other hand, I don't think it should be merged; group extensions are important and will one day grow into their own article, delving into calculations with group cohomology and such. -lethe talk + 07:45, 1 April 2006 (UTC)
- Very well. Withdrawing the merge proposal. Sim 19:06, 29 April 2006 (UTC)
[edit] Expansion
I made the article a little less of a stub DKleinecke 22:11, 16 November 2006 (UTC)
The two definitions are now in conflict about which group is G and which is H. I think the second way is better and this first should be changed. What does anybody else think? DKleinecke 23:02, 21 November 2006 (UTC)
- What do you mean by the "second way"? The reason I exchanged G and H was that the previous version was incorrect under any possible interpretation. There still remains the question of whether G' is an extension of G by H, or of H by G. I did some searching, and concluded that the way it is on the page now is the most common usage: but one reference said that the other is sometimes used. Vegasprof 21:51, 23 November 2006 (UTC)
[edit] Abelian extensions
I added a sentence about classifying extensions of one abelian group by another, as this is a particularly important special case.
Also, it seems to me that an extension G of Q should be equipped with a map to Q, not just that it has some quotient that is isomorphic to Q. Certainly in commutative algebra, an extension of Q by N refers to the whole exact sequence -- is this not the way that group theorists see it? QBobWatson 19:35, 3 October 2007 (UTC)