GRIN2D
From Wikipedia, the free encyclopedia
Glutamate receptor, ionotropic, N-methyl D-aspartate 2D
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | GRIN2D; EB11; NMDAR2D | |||||||||||||
External IDs | OMIM: 602717 MGI: 95823 HomoloGene: 648 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 2906 | 14814 | ||||||||||||
Ensembl | ENSG00000105464 | ENSMUSG00000002771 | ||||||||||||
Uniprot | O15399 | Q03391 | ||||||||||||
Refseq | NM_000836 (mRNA) NP_000827 (protein) |
NM_008172 (mRNA) NP_032198 (protein) |
||||||||||||
Location | Chr 19: 53.59 - 53.64 Mb | Chr 7: 45.7 - 45.73 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Glutamate receptor, ionotropic, N-methyl D-aspartate 2D, also known as GRIN2D, is a human gene.[1]
N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C), and NMDAR2D (GRIN2D).[1]
Contents |
[edit] See also
[edit] References
[edit] Further reading
- Schröder HC, Perovic S, Kavsan V, et al. (1998). "Mechanisms of prionSc- and HIV-1 gp120 induced neuronal cell death.". Neurotoxicology 19 (4-5): 683-8. PMID 9745929.
- King JE, Eugenin EA, Buckner CM, Berman JW (2006). "HIV tat and neurotoxicity.". Microbes Infect. 8 (5): 1347-57. doi: . PMID 16697675.
- Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995). "Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95.". Science 269 (5231): 1737-40. PMID 7569905.
- Magnuson DS, Knudsen BE, Geiger JD, et al. (1995). "Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity.". Ann. Neurol. 37 (3): 373-80. doi: . PMID 7695237.
- Lannuzel A, Lledo PM, Lamghitnia HO, et al. (1996). "HIV-1 envelope proteins gp120 and gp160 potentiate NMDA-induced [Ca2+]i increase, alter [Ca2+]i homeostasis and induce neurotoxicity in human embryonic neurons.". Eur. J. Neurosci. 7 (11): 2285-93. PMID 8563977.
- Corasaniti MT, Melino G, Navarra M, et al. (1996). "Death of cultured human neuroblastoma cells induced by HIV-1 gp120 is prevented by NMDA receptor antagonists and inhibitors of nitric oxide and cyclooxygenase.". Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration 4 (3): 315-21. PMID 8581564.
- Akbarian S, Sucher NJ, Bradley D, et al. (1996). "Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics.". J. Neurosci. 16 (1): 19-30. PMID 8613785.
- Pittaluga A, Pattarini R, Severi P, Raiteri M (1996). "Human brain N-methyl-D-aspartate receptors regulating noradrenaline release are positively modulated by HIV-1 coat protein gp120.". AIDS 10 (5): 463-8. PMID 8724036.
- Wu P, Price P, Du B, et al. (1996). "Direct cytotoxicity of HIV-1 envelope protein gp120 on human NT neurons.". Neuroreport 7 (5): 1045-9. PMID 8804048.
- Bennett BA, Rusyniak DE, Hollingsworth CK (1996). "HIV-1 gp120-induced neurotoxicity to midbrain dopamine cultures.". Brain Res. 705 (1-2): 168-76. PMID 8821747.
- Toggas SM, Masliah E, Mucke L (1996). "Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine.". Brain Res. 706 (2): 303-7. PMID 8822372.
- Dreyer EB, Lipton SA (1996). "The coat protein gp120 of HIV-1 inhibits astrocyte uptake of excitatory amino acids via macrophage arachidonic acid.". Eur. J. Neurosci. 7 (12): 2502-7. PMID 8845955.
- Raber J, Toggas SM, Lee S, et al. (1997). "Central nervous system expression of HIV-1 Gp120 activates the hypothalamic-pituitary-adrenal axis: evidence for involvement of NMDA receptors and nitric oxide synthase.". Virology 226 (2): 362-73. doi: . PMID 8955056.
- Scherzer CR, Landwehrmeyer GB, Kerner JA, et al. (1997). "Cellular distribution of NMDA glutamate receptor subunit mRNAs in the human cerebellum.". Neurobiol. Dis. 4 (1): 35-46. doi: . PMID 9258910.
- Watanabe T, Inoue S, Hiroi H, et al. (1998). "Isolation of estrogen-responsive genes with a CpG island library.". Mol. Cell. Biol. 18 (1): 442-9. PMID 9418891.
- Kalsi G, Whiting P, Bourdelles BL, et al. (1998). "Localization of the human NMDAR2D receptor subunit gene (GRIN2D) to 19q13.1-qter, the NMDAR2A subunit gene to 16p13.2 (GRIN2A), and the NMDAR2C subunit gene (GRIN2C) to 17q24-q25 using somatic cell hybrid and radiation hybrid mapping panels.". Genomics 47 (3): 423-5. doi: . PMID 9480759.
- Hess SD, Daggett LP, Deal C, et al. (1998). "Functional characterization of human N-methyl-D-aspartate subtype 1A/2D receptors.". J. Neurochem. 70 (3): 1269-79. PMID 9489750.
- Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ (1998). "CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins.". Mol. Cell. Neurosci. 11 (3): 161-72. doi: . PMID 9647694.
- New DR, Maggirwar SB, Epstein LG, et al. (1998). "HIV-1 Tat induces neuronal death via tumor necrosis factor-alpha and activation of non-N-methyl-D-aspartate receptors by a NFkappaB-independent mechanism.". J. Biol. Chem. 273 (28): 17852-8. PMID 9651389.
[edit] External links
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
|