Green's theorem
From Wikipedia, the free encyclopedia
In physics and mathematics, Green's theorem gives the relationship between a line integral around a simple closed curve C and a double integral over the plane region D bounded by C. It is the two-dimensional special case of the more general Stokes' theorem, and is named after British scientist George Green.
Let C be a positively oriented, piecewise smooth, simple closed curve in the plane R2, and let D be the region bounded by C. If L and M are functions of (x, y) defined on an open region containing D and have continuous partial derivatives there, then
Sometimes a small circle is placed on the integral symbol to indicate that the curve C is closed. For positive orientation, an arrow pointing in the counterclockwise direction may be drawn in this circle.
In physics, Green's theorem is mostly used to solve two-dimensional flow integrals, stating that the sum of fluid outflows at any point inside a volume is equal to the total outflow summed about an enclosing area.
Contents |
[edit] Proof when D is a simple region
The following is a proof of the theorem for the simplified area D, a type I region where C2 and C4 are vertical lines. A similar proof exists for when D is a type II region where C1 and C3 are straight lines.
If it can be shown that
and
are true, then Green's theorem is proven in the first case.
Define the type I region D as pictured on the right by:
where g1 and g2 are continuous functions on [a, b]. Compute the double integral in (1):
Now compute the line integral in (1). C can be rewritten as the union of four curves: C1, C2, C3, C4.
With C1, use the parametric equations: x = x, y = g1(x), a ≤ x ≤ b. Then
With C3, use the parametric equations: x = x, y = g2(x), a ≤ x ≤ b. Then
The integral over C3 is negated because it goes in the negative direction from b to a, as C is oriented positively (counterclockwise). On C2 and C4, x remains constant, meaning
Therefore,
Combining (3) with (4), we get (1). Similar computations give (2).
[edit] Relationship to the divergence theorem
Green's theorem is equivalent to the following two-dimensional analogue of the divergence theorem:
where is the outward-pointing unit normal vector on the boundary.
To see this, consider the unit normal in the right side of the equation. Since is a vector pointing tangential along a curve, and the curve C is the positively-oriented (i.e. counterclockwise) curve along the boundary, an outward normal would be a vector which points 90° to the right, which would be . The length of this vector is . So .
Now let the components of . Then the right hand side becomes
which by Green's theorem becomes
[edit] See also
- Stokes' theorem
- Divergence theorem
- Planimeter
- Method of image charges - A method used in electrostatics that takes strong advantage of the uniqueness theorem (derived from Green's theorem)
- Green's identities