Graphical system design

From Wikipedia, the free encyclopedia

Graphical system design is a modern approach to designing, prototyping, and deploying embedded systems that combines open graphical programming with COTS hardware to dramatically simplify development, resulting in higher-quality designs with a migration to custom design. This is basically a way for domain experts, or non-embedded experts, to access embedded design where they would traditionally need to outsource an embedded design expert.

This approach to embedded system design is a super-set of Electronic System Level (ESL) design. Graphical system design expands on the EDA-based ESL definition to include other types of embedded system design including industrial machines and medical devices. Many of these expanded applications can be defined as "the long tail" applications.

Contents

[edit] In laymen's terms

Graphical system design is an approach to designing an entire system, using more intuitive graphical software and off-the-shelf (non-custom) hardware devices to refine the design, create initial prototypes and even use for the few run of deployments. I have seen this approach successful with companies that need to get something to market quickly (medical video: [1]) or with a team of non-embedded experts like Boston Engineering [2] to create a mechatronics-based machine.

[edit] Graphical System Design RE: ESL

"Graphical system design is a complementary but encompassing approach that includes embedded and electronic system design, implementation, and verification tools. ESL and graphical system design are really part of the same movement--higher abstraction and more design automation looking to solve the real engineering challenges that designers are facing today--addressing design flaws that are introduced at the specification stage to ensure they're detected well before validation for on-time product delivery."

[edit] Tools

Graphical system design relies on open connectivity. For example, tools that can be used in the design phase include (in alphabetical order): Ansoft Designer, AutoCAD, CarSim, DOORS, Dymola, LabVIEW, Matlab, MSC.Adams, MultiSim, SolidWorks, SPICE.

The prototyping stage is more about taking algorithm design and implementing them on hardware for higher quality designs. An effective prototyping platform includes a high-level language, real-time processors, FPGA logic, modular I/O and any intellectual property needed.

The deploy stage is mostly about hardware - where you put your design in the final stage. This may involved MPUs or FPGAs.

[edit] Examples

Examples of engineers and scientists applying graphical system design techinques include: