Go and mathematics
From Wikipedia, the free encyclopedia
Part of a series of articles on Go (board game) |
Game specifics History & Culture Players & Organisations Computers & Mathematics
|
The game of Go is one of the most popular games in the world and is on par with games such as chess, in any of its Western or Asian variants, in terms of game theory and as an intellectual activity. It has also been argued to be the most complex of all games, with most advocates referring to the difficulty in programming the game to be played by computers and the large number of variations of play.[1] While the strongest computer chess software has defeated top players (Deep Blue beat the world champion in 1997), the best Go programs routinely lose to talented children and consistently reach only the 1-10 kyu range of ranking. Many in the field of artificial intelligence consider Go to be a better measure of a computer's capacity for thought than chess.[2]
As a result of its elegant and simple rules, the game of Go has long been an inspiration for mathematical research. Chinese scholars of the 11th century already published work on permutations based on the go board. In more recent years, research of the game by John H. Conway led to the invention of the surreal numbers and contributed to development of combinatorial game theory (with Go Infinitesimals[3] being a specific example of its use in Go).
Contents |
[edit] Legal positions
Since each location on the board can be either empty, black, or white, there are a total of 3N possible board positions. Tromp and Farnebäck show that on a 19×19 board, about 1.196% of board positions are legal (no stones without liberties exist on the board), which makes for 3361×0.01196... = 2.08168199382 ×10170 legal positions "of which we can expect all digits to be correct" (i.e. because the convergence is so fast).[4] As the board gets larger, the percentage of the positions that is legal decreases. Go (with Japanese ko rules) is a two player un-bounded EXPTIME-complete game.[5]
Game size | Board size N | 3N | Percent legal | Maximum legal game positions[6] |
---|---|---|---|---|
2×2 | 4 | 81 | 70% | 57 |
3×3 | 9 | 19,683 | 64% | 12,675 |
4×4 | 16 | 43,046,721 | 56% | 24,318,165 |
5×5 | 25 | 8.47×1011 | 49% | 4.1×1011 |
9×9 | 81 | 4.4×1038 | 23.4% | 1.039×1038 |
13×13 | 169 | 4.3×1080 | 8.66% | 3.72497923×1079 |
19×19 | 361 | 1.74×10172 | 1.196% | 2.08168199382×10170 |
21×21 | 441 | 2.57×10210 |
[edit] Game tree complexity
The computer scientist Victor Allis notes that typical games between experts last about 150 moves, with an average of about 250 choices per move, suggesting a game-tree complexity of 10360.[7] For the number of theoretically possible games, including ones impossible to play in practice. Tromp and Farnebäck give lower and upper bounds of 101048 and 1010171 respectively.[8] The most commonly quoted number for the number of possible games, 10700[1] is derived from a simple permutation of 361 moves or 361! = 10768. Another common derivation is to assume N intersections and L longest game for N^L total games. For example, 400 moves, as seen in some professional games, would be one out of 361400 or 1 × 101023 possible games.
The total number of possible games is a function both of the size of the board and the number of moves played. While most games last less than 400 or even 200 moves, many more are possible.
Game size | Board size N (intersections) | N! | Average game length L | NL | Maximum game length (# of moves) | Lower Limit of games | Upper Limit of games |
---|---|---|---|---|---|---|---|
2×2 | 4 | 24 | 3 | 64 | 386,356,909,593[9] | ||
3×3 | 9 | 3.6×105 | 5 | 5.9×104 | |||
4×4 | 16 | 2.1×1013 | 9 | 6.9×1010 | |||
5×5 | 25 | 1.6×1025 | 15 | 9.3×1020 | |||
9×9 | 81 | 5.8×10120 | 45 | 7.6×1085 | |||
13×13 | 169 | 4.3×10304 | 90 | 3.2×10200 | |||
19×19 | 361 | 1.0×10768 | 200 | 3×10511 | 1048 | 101048 | 1010171 |
21×21 | 441 | 2.5×10976 | 250 | 1.3×10661 |
The total number of possible games can be estimated from the board size in a number of ways, some more rigorous than others. The simplest, a permutation of the board size, fails to include illegal captures and positions. Taking N as the board size (19×19=361) and L as the longest game, NL forms an upper limit. A more accurate limit is presented in the Tromp/Farnebäck paper.
Longest game L (19×19) | (N)L | NL | Lower Limit of games | Notes |
---|---|---|---|---|
1 | 1 | 361 | 361 | White resigns after first move |
50 | 2.1×10126 | 7.5×10127 | ||
100 | 1.4×10249 | 5.6×10255 | ||
150 | 6.4×10367 | 4.2×10383 | ||
200 | 1.9×10481 | 3.2×10511 | ||
250 | 8.2×10587 | 2.4×10639 | ||
300 | 2.8×10684 | 7.8×10766 | ||
350 | 3.6×10760 | 1.3×10895 | ||
361 | 1.4×10768 | 1.8×10923 | Longest game using 181 black and 180 white stones | |
400 | n/a | 1.0×101023 | Longest professional games | |
500 | n/a | 5.7×101278 | ||
1000 | n/a | 3.2×102557 | ||
47 million | n/a | 10108 | 361^3 moves | |
1048 | 102.6×1048 | 101048 | Longest game |
From this table, we can see that 10700 is an overestimate of the number of possible games that can be played in 200 moves and an underestimate of the number of games that can be played in 361 moves. It can also be noted that since there are about 31 million seconds in a year, it would take about 2¼ years, playing 16 hours a day at one move per second, to play 47 million moves. As to 1048, since the future age of the universe is projected to be less than 1000 trillion years[10] and no computer is projected to compute anything close to a trillion Teraflops, any number higher than 1039 is beyond possibility of being played.
[edit] Positional complexity
Many of the commonly seen opening strategies, joseki and tactical shapes which aid skillful play have been developed over thousands of years of play and taught to successive generations rather than discovered through individual play. There are many positional situations in Go which are recognizable by an experienced player that are hard to recognize otherwise. Once players gain knowledge of these patterns in play, they then must ponder how to apply them in accordance with the position of the board as it stands and the recognizable patterns already in place. Thus, the traditions of Go strategical theory utilized by most stronger players and taught to beginners help to limit the scope of variation in actual play while deepening strategy.
[edit] See also
- Game complexity
- Shannon number (Chess)
[edit] Notes
[edit] References
- AGA. Top Ten Reasons to Play Go.
- Johnson, George (1997-07-29). To Test a Powerful Computer, Play an Ancient Game. New York Times.
- John Tromp and Gunnar Farnebäck (2007). Combinatorics of Go.
- Robert Hearn (2006). Games, Puzzles, and Computation.
- Tromp, John (2005). Number of legal Go positions (up to 19×19).
- Victor Allis (1994). Searching for Solutions in Games and Artificial Intelligence. Ph.D. Thesis, University of Limburg, Maastricht, The Netherlands. ISBN 9090074880.
- Tromp, John (1999). Number of 2×2 games with positional superko).
[edit] External links
- Combinatorics of Go online viewer
- Go and Mathematics