Geomatics engineering

From Wikipedia, the free encyclopedia

Geomatics engineering is a rapidly developing discipline that focuses on spatial information (i.e. information that has a location). The location is the primary factor used to integrate a very wide range of data for viewing and analysis. Geomatics engineers apply engineering principles to spatial information and implement relational data structures involving measurement sciences, thus using geomatics and acting as spatial information engineers. Geomatics engineers manage local, regional, national and global spatial data infrastructures.

Geomatics is a new term incorporating the older field of surveying along with many other aspects of spatial data management. Following the advanced developments in digital data processing, the nature of the tasks required of the professional land surveyor has evolved and the term surveying alone does not any more describe the whole range of tasks that the profession deals with. As our societies becomes more complex, information with a spatial position associated with it becomes more critical to decision-making, both from a personal and a business perspective, and also from a community and a large-scale governmental viewpoint.

Therefore, the geomatics engineer can be involved in an extremely wide variety of information gathering activities and applications. Geomatics engineers design, develop, and operate systems for collecting and analyzing spatial information about the land, the oceans, natural resources, and manmade features. Geomatics engineering applications include integrating science and technology from both new and traditional disciplines:

The more traditional land surveying strand of geomatics engineering is concerned with the determination and recording of boundaries and areas of real property parcels, and the preparation and interpretation of legal land descriptions. The tasks more closely related to civil engineering include the design and layout of public infrastructure and urban subdivisions, and mapping and control surveys for construction projects.

Geomatics engineers serve society by collecting, monitoring, archiving, and maintaining diverse spatial data infrastructures. Geomatics engineers utilize a wide range of technologically advanced tools such as digital theodolite/distance meter total stations, Global Positioning System (GPS) equipment, digital aerial imagery (both satellite and air-borne), and computer-based geographic information systems (GIS). These tools enable the geomatics engineer to gather, analyze, and manage spatially related information to solve a wide range of technical and societal problems.

Geomatics engineering is the field of activity that integrates the acquisition, processing, analysis, display and management of spatial information. It is an exciting and new grouping of subjects in the spatial and environmental information sciences with a broad range of employment opportunities as well as offering challenging pure and applied research problems in a vast range of interdisciplinary fields.

In different schools and in different countries the same education curriculum is administered with the name surveying in some, and in others with the name geomatics engineering. While these occupations were at one time often taught in civil engineering education programs, more and more universities include the departments relevant for geo-data sciences under informatics, computer science or applied mathematics. These facts demonstrate the breadth, depth and scope of the highly interdisciplinary nature of geomatics engineering.

Languages