Generalized Ozaki cost function

From Wikipedia, the free encyclopedia

The generalized-Ozaki cost is a general description of cost described by Shuichi Nakamura.[1]

For output y, at date t and a vector of m input prices p, the generalized-ozaki cost, c, is

c(p,y,t) = \sum_i b_{ii} \left( y^{b_{yi}}e^{b_{ti}t} p_i + \sum_{j\,:\,j\neq i} b_{ij} \sqrt{p_ip_j} y^{b_y} e^{b_tt}\right).

[edit] References

  1. ^ Shinichiro Nakamura (1990). "A Nonhomothetic Generalized Leontief Cost Function Based on Pooled Data". The Review of Economics and Statistics 72 (4): 649-656.