Gaussian measure
From Wikipedia, the free encyclopedia
In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space Rn, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are named after the German mathematician Carl Friedrich Gauss.
Contents |
[edit] Definitions
Let n ∈ N and let B0(Rn) denote the completion of the Borel σ-algebra on Rn. Let λn : B0(Rn) → [0, +∞] denote the usual n-dimensional Lebesgue measure. Then the standard Gaussian measure γn : B0(Rn) → [0, +∞] is defined by
for any measurable set A ∈ B0(Rn). In terms of the Radon-Nikodym derivative,
More generally, the Gaussian measure with mean μ ∈ Rn and variance σ2 > 0 is given by
Gaussian measures with mean μ = 0 are known as centred Gaussian measures.
The Dirac measure δμ is the weak limit of as σ → 0, and is considered to be a degenerate Gaussian measure; in contrast, Gaussian measures with finite, non-zero variance are called non-degenerate Gaussian measures.
[edit] Properties of Gaussian measure
The standard Gaussian measure γn on Rn
- is a Borel measure (in fact, as remarked above, it is defined on the completion of the Borel sigma algebra, which is a finer structure);
- is equivalent to Lebesgue measure: , where stands for absolute continuity of measures;
- is supported on all of Euclidean space: supp(γn) = Rn;
- is a probability measure (γn(Rn) = 1), and so it is locally finite;
- is strictly positive: every non-empty open set has positive measure;
- is inner regular: for all Borel sets A,
so Gaussian measure is a Radon measure;
- is not translation-invariant, but does satisfy the relation
- where the derivative on the left-hand side is the Radon-Nikodym derivative, and (Th)∗(γn) is the push forward of standard Gaussian measure by the translation map Th : Rn → Rn, Th(x) = x + h;
- is the probability measure associated to a normal probability distribution:
- .
[edit] Gaussian measures on infinite-dimensional spaces
It can be shown that there is no analogue of Lebesgue measure on an infinite-dimensional vector space. Even so, it is possible to define Gaussian measures on infinte-dimensional spaces, the main example being the abstract Wiener space construction. A Borel measure γ on a separable Banach space E is said to be a non-degenerate (centred) Gaussian measure if, for every linear functional L ∈ E∗ except L = 0, the push-forward measure L∗(γ) is a non-degenerate (centred) Gaussian measure on R in the sense defined above.
For example, classical Wiener measure on the space of continuous paths is a Gaussian measure.