FUSIP1

From Wikipedia, the free encyclopedia


FUS interacting protein (serine/arginine-rich) 1
Identifiers
Symbol(s) FUSIP1; FUSIP2; NSSR; SFRS13; SRp38; SRrp40; TASR; TASR1; TASR2
External IDs OMIM: 605221 MGI1333805 HomoloGene87811
Orthologs
Human Mouse
Entrez 10772 14105
Ensembl n/a ENSMUSG00000028676
Uniprot n/a Q3UXS8
Refseq NM_006625 (mRNA)
NP_006616 (protein)
XM_987706 (mRNA)
XP_992800 (protein)
Location n/a Chr 4: 135.13 - 135.14 Mb
Pubmed search [1] [2]

FUS interacting protein (serine/arginine-rich) 1, also known as FUSIP1, is a human gene.[1]

This gene product is a member of the serine-arginine (SR) family of proteins, which is involved in constitutive and regulated RNA splicing. Members of this family are characterized by N-terminal RNP1 and RNP2 motifs, which are required for binding to RNA, and multiple C-terminal SR/RS repeats, which are important in mediating association with other cellular proteins. This protein can influence splice site selection of adenovirus E1A pre-mRNA. It interacts with the oncoprotein TLS, and abrogates the influence of TLS on E1A pre-mRNA splicing. Alternative splicing of this gene results in at least two transcript variants encoding different isoforms. In addition, transcript variants utilizing alternative polyA sites exist.[1]

[edit] References

[edit] Further reading

  • Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298. 
  • Andersson B, Wentland MA, Ricafrente JY, et al. (1996). "A "double adaptor" method for improved shotgun library construction.". Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474. 
  • Yu W, Andersson B, Worley KC, et al. (1997). "Large-scale concatenation cDNA sequencing.". Genome Res. 7 (4): 353–8. PMID 9110174. 
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149. 
  • Yang L, Embree LJ, Tsai S, Hickstein DD (1998). "Oncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing.". J. Biol. Chem. 273 (43): 27761–4. PMID 9774382. 
  • Yang L, Embree LJ, Hickstein DD (2000). "TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins.". Mol. Cell. Biol. 20 (10): 3345–54. PMID 10779324. 
  • Cowper AE, Cáceres JF, Mayeda A, Screaton GR (2002). "Serine-arginine (SR) protein-like factors that antagonize authentic SR proteins and regulate alternative splicing.". J. Biol. Chem. 276 (52): 48908–14. doi:10.1074/jbc.M103967200. PMID 11684676. 
  • Andersen JS, Lyon CE, Fox AH, et al. (2002). "Directed proteomic analysis of the human nucleolus.". Curr. Biol. 12 (1): 1–11. PMID 11790298. 
  • Clinton JM, Chansky HA, Odell DD, et al. (2002). "Characterization and expression of the human gene encoding two translocation liposarcoma protein-associated serine-arginine (TASR) proteins.". Gene 284 (1-2): 141–7. PMID 11891055. 
  • Shin C, Manley JL (2002). "The SR protein SRp38 represses splicing in M phase cells.". Cell 111 (3): 407–17. PMID 12419250. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932. 
  • Li J, Hawkins IC, Harvey CD, et al. (2003). "Regulation of alternative splicing by SRrp86 and its interacting proteins.". Mol. Cell. Biol. 23 (21): 7437–47. PMID 14559993. 
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039. 
  • Shin C, Feng Y, Manley JL (2004). "Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock.". Nature 427 (6974): 553–8. doi:10.1038/nature02288. PMID 14765198. 
  • Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins.". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. doi:10.1073/pnas.0404720101. PMID 15302935. 
  • Jin J, Smith FD, Stark C, et al. (2004). "Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization.". Curr. Biol. 14 (16): 1436–50. doi:10.1016/j.cub.2004.07.051. PMID 15324660. 
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334. 
  • Benzinger A, Muster N, Koch HB, et al. (2005). "Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer.". Mol. Cell Proteomics 4 (6): 785–95. doi:10.1074/mcp.M500021-MCP200. PMID 15778465. 
  • Shin C, Kleiman FE, Manley JL (2005). "Multiple properties of the splicing repressor SRp38 distinguish it from typical SR proteins.". Mol. Cell. Biol. 25 (18): 8334–43. doi:10.1128/MCB.25.18.8334-8343.2005. PMID 16135820. 
  • Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.