Image:FunctorCone-04.png

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

[edit] Summary

Commutative diagram illustrating a universal cone (or a limit in category). Can also be used to any depict a morphism of cones.

[edit] Licensing

Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

[edit] TeX source

\begin{diagram}
F(X) & & \rTo^{F(f)} & & F(Y) \\
& \rdTo(2,2)^{\phi_X}\rdTo(2,4)_{\psi_X} & & \ldTo(2,2)^{\phi_Y}\ldTo(2,4)_{\psi_Y} & \\
& & L & & \\
& & \dDashTo~u &  & \\
& & N & & \\
\end{diagram}

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current17:47, 20 October 2006232×219 (5 KB)Fropuff (new version; dashed instead of dotted)
15:34, 19 March 2006232×219 (6 KB)Maksim (La bildo estas kopiita de wikipedia:en. La originala priskribo estas: Commutative diagram for Limit (category theory) illustrating the universal property of a functor co-cone. TeX source: \begin{diagram} F(X) & & \rTo^{F(f)} & & F(Y) )
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):