Fundamental class

From Wikipedia, the free encyclopedia

In mathematics, the fundamental class is a homology class [M] associated to an oriented manifold M, which corresponds to "the whole manifold", and pairing with which corresponds to "integrating over the manifold".

[edit] Closed, orientable

When M is a connected orientable closed manifold of dimension n, the top homology group is infinite cyclic: H_n(M,\mathbf{Z}) \cong \mathbf{Z}, and an orientation is a choice of generator, a choice of isomorphism \mathbf{Z} \to H_n(M,\mathbf{Z}). The generator is called the fundamental class.

If M is disconnected (but still orientable), a fundamental class is a fundamental class for each connected component (corresponding to an orientation for each component).

It represents, in a sense, integration over M, and in relation with de Rham cohomology it is exactly that; namely for M a smooth manifold, an n-form ω can be paired with the fundamental class as

\langle\omega, [M]\rangle = \int_M \omega

to get a real number, which is the integral of ω over M, and depends only on the cohomology class of ω.

[edit] Non-orientable

If M is not orientable, one cannot define a fundamental class, or more precisely, one cannot define a fundamental class over \mathbf{Z} (or over \mathbf{R}), as H_n(M;\mathbf{Z})=0 (if M is connected), and indeed, one cannot integrate differential n-forms over non-orientable manifolds.

However, every closed manifold is \mathbf{Z}/2-orientable, and H_n(M;\mathbf{Z}/2)=\mathbf{Z}/2 (for M connected). Thus every closed manifold is \mathbf{Z}/2-oriented (not just orientable: there is no ambiguity in choice of orientation), and has a \mathbf{Z}/2-fundamental class.

This \mathbf{Z}/2-fundamental class is used in defining Stiefel–Whitney numbers.

[edit] With boundary

If M is an compact orientable manifold with boundary, then the top relative homology group is again infinite cyclic H_n(M,\partial M)\cong \mathbf{Z}, and as with closed manifolds, a choice of isomorphism is a fundamental class.