Full cycle

From Wikipedia, the free encyclopedia

For the record label, see Full Cycle Recordings

A full cycle is a mathematical term that represents a traversal over a set of non-random numbers. A full cycle implies that every number in the set was chosen exactly once before repeating.

Full cycles are useful in Pseudorandom number generators.

Contents

[edit] Example 1 (in C++)

Given a random number seed that is greater or equal to zero. Given a total sample size greater than 1. Given a prime number that cannot be evenly divided into the total sample size.

A full cycle can be generated with the following logic. Each number in the sample_size should occur once.

unsigned int random_seed = 0;
unsigned int sample_size = 3000;
unsigned int generated_number = random_seed % sample_size;
unsigned int prime_number = 7;
unsigned int increment = prime_number;
for(unsigned int iterator = 0; iterator < sample_size; ++iterator)
{
   generated_number = (generated_number + increment) % sample_size;
}

[edit] Example 2 (in C++)

// PseudoRandomTest1.cpp : Defines the entry point for the console application.
#include "stdafx.h"

void main(int argc, char* argv[])
{
        unsigned int random_seed = 0;
        const unsigned int sample_size = 3000;
        unsigned int generated_number = random_seed % sample_size;
        unsigned int prime_number = 1;
        unsigned int increment = prime_number;

        bool test[sample_size] = {0};

        for(unsigned int iterator = 0; iterator < sample_size; ++iterator)
        {
                generated_number = (generated_number + increment) % sample_size;
                test[generated_number] = true;

                static bool displayOnce = true;
                if (displayOnce)
                {
                        printf("Predicable Random Numbers:\n");
                        displayOnce = false;
                }

                printf("%d ", generated_number);
        }

        for(unsigned int iterator = 0; iterator < sample_size; ++iterator)
        {
                if (!test[iterator])
                {
                        static bool displayOnce = true;
                        if (displayOnce)
                        {
                                printf("\nYou must have not used a prime number [ERROR]\n");
                                displayOnce = false;
                        }
                        printf("%d ", iterator);
                }
        }
}

[edit] Example 2 (in C#)

using System;
using System.Collections.Generic;
using System.Text;

namespace PseudoRandomTest1
{
    class Program
    {
        static Boolean m_DisplayOnce = false;

        static void Main(string[] args)
        {
            const UInt32 random_seed = 0;
            const UInt32 sample_size = 3000;
            UInt32 generated_number = random_seed % sample_size;
            const UInt32 prime_number = 751;
            const UInt32 increment = prime_number;
            
            Boolean[] test = new Boolean[sample_size];
            
            m_DisplayOnce = true;
            for(UInt32 iterator = 0; iterator < sample_size; ++iterator)
            {
                generated_number = (generated_number + increment) % sample_size;
                test[generated_number] = true;

                if (m_DisplayOnce)
                {
                        Console.WriteLine("Predicable Random Numbers:");
                        m_DisplayOnce = false;
                }

                Console.Write("{0} ", generated_number);
            }
            
            m_DisplayOnce = true;
            for(UInt32 iterator = 0; iterator < sample_size; ++iterator)
            {
                if (!test[iterator])
                {
                    if (m_DisplayOnce)
                    {
                        Console.WriteLine();
                        Console.WriteLine("You must have not used a prime number [ERROR]");
                        m_DisplayOnce = false;
                    }
                    Console.Write("{0} ", iterator);
                }
            }
        }
    }
}

[edit] See also