Talk:Fuel oil

From Wikipedia, the free encyclopedia

WikiProject Energy This article is within the scope of WikiProject Energy, which collaborates on articles related to energy.
B This article has been rated as B-Class on the assessment scale.
Mid This article is on a subject of mid importance within energy.

This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.

Contents

[edit] Undid addition of claim that a fuel oil is Transmix

Just like to clarify that although transmix can contain fuel oils, fuel oil is not transmix. Transmix refers to off-grade mixtures of gasoline and diesel fuels that are not usable or saleable as motor fuels and are therefore reblended to be refined again to within usable specs. ie: transmix is almost like junk oil. Fuel oil however, conforms to certain specifications for specific uses. Venny85 —Preceding comment was added at 14:59, 1 February 2008 (UTC)

[edit] Request addition of a missing class

Under Maritime, the table which displays bunker fuel grades, the author seems to have left out a pretty common grade too. A small addition is needed to it.

The table has 180cSt, 700cSt etc, but seems to have left out the 500cSt grade of bunker fuel. I'll see if I can get more detailed specs for this grade to add into the table, but if any of you guys already know, do feel free to edit it already.

Venny85 (talk) 06:04, 18 November 2007 (UTC)


fuel oil can be diesel fuel, heating oil, or biodiesel. —Preceding unsigned comment added by 71.184.77.92 (talk) 06:59, 20 January 2008 (UTC) I was referring to marine fuel oils.


haha, actually i found out why already. Under ISO 8217, Specifications of marine fuels ISO 8217-96 edition, viscosities were specified at 100C. The viscosity at 100C of the RMH45 fuel oils would be about 500cSt at 50C, while the RMH55 would be about 700cSt at 50C. Under ISO8217-05 edition, viscosities are at 50C which also removed the 500cSt range and placed them as a 700cSt grade. Testing of kinematic viscosities of these products are done under the new ISO3104 or IP71 or ASTM D445 standards. Therefore, although the 500cSt isnt a standard grade, its still used as a specification for fuel oils in the range of 380cSt-500cSt. But, they will still be graded as 700cSt. Venny85 (talk)


[edit] Another question

Another question : What are the specifications of heating oil(s) ? Flash point, water and sediments,Kinematic viscosity, Sulfated Ash, etc. as an example of what I'm looking for: http://www.filter-specialty.com/PDF/bdspec.pdf Purelife1970@hotmail.com Nov 09 2006


Question: can someone from an oil major please fill some more details about the various supply chains and fuel oil transportation details please? Where does this stuff come from geographically? How does it get transported? And, how is it bought and sold? Are there trading markets? What types of deals are common? --Richard@lbrc.org 21:35, 13 October 2005 (UTC)


[edit] Expansion, corrections

The current article is correct as far as I can tell. Be careful when making changes to the "classes" part, as some otherwise reliable sources (government, industry) have incorrect information about fuel oil. One problem is that there are some many different names for the same thing, such as heating oil, No. 2 fuel oil, No. 2 distillate and No. 2 diesel fuel. Just as confusingly, there are a few things that people often say are the same thing, but technically aren't. For example, residual fuel oil is sometimes used as a synonym for No. 6 fuel oil. However, No. 5 is also a residual fuel oil, and No. 4 is often a mix of residual and distillate fuel oil. This mistake was made in the residual fuel article, which is actually about No. 6 fuel oil. I think the article should be merged into this one either rather than fixing it.

Additions - Andrew Waugh I added brief information about UK designations and other peripheral matter and would like to expand on the topic when time is available. I have plenty of info available as I'm a long serving (suffering?) equipment manufacturing company with 66 years historical / current data. end)


I've been trying to find information about the marine classes and I'll post it if I find any. It looks like they have some equivalencies with the fuel oils, but the specifications seem to be looser, such as allowing higher levels of sulfur. -- Kjkolb 04:36, 10 December 2005 (UTC)

I merged the articles. -- Kjkolb 09:50, 10 December 2005 (UTC)

Some information regarding the generic term for one of the lighter fuels Diesel Fuel Marine (DFM) would be useful. I'm still unsure as to whether that is a different name for Marine Diesel oil (MDO) or not. I work for MSC (Military Sealift Command) as a civilian mariner and all MSC and US Navy vessels use DFM for their main fuel (except nuclear vessels). However, the Navy is switching to MGO</a> because apparently it is cheaper(?). I thought that residual fuels were cheaper than lighter distillate fuels. http://www.msc.navy.mil/sealift/2006/August/perspective.htm Hengineer 10:44, 29 August 2006 (UTC)


Alterations - S. Ray i've just made some slight alterations to the article. Although not an expert in heavy fuel oils / residual fuel oils in particular i am a senior marine engineer on VLCC oil tankers with 30 years experience and felt my input may be useful. Firstly, with regard to the area of the article which stated that steamships are not used anymore; they are infact in use, and although the "glory days" of steam powered oil tankers may have passed, most if not all of the newer LNG and LPG carrying tankers are utilising steam power due to the fact that waste gas from the cargo tanks can be employed as a fuel. There are a huge amount of these ships being built therefore i feel it is factually incorrect to state that steamships are no longer used. I also made a slight extension to the early passage, which deals with the grading system and nomenclature of residual oils. Very few ships and people in the maritime industry, with the possible exception of some naval personnel, actually use this system. It is mainly reserved for those in shore side industral roles. Shipping tends to employ a simple system where critical aspects of the fuel are analysed and the suitability of the fuel is determined, mainly down to viscosity, flash point, pour point, sulphur and vanadium content etc. Please be aware that this is the first time i have used wikipedia for anything other than reading, and so if my actions and / or explanations are not fitting with common wikipedia practice i am happy to ammend them further. Also, if encyclopedic reference is required i can supply extensive detail from both ships and publications such as Lamb's Questions and answers on marine diesel engines, pounder's marine diesel engines, and various fuel oil specific books. If any further information regarding anything i have written or about the article in general i would be more than happy to expand on it or supply the information required. S. Ray, Chief Engineer.

[edit] Carbon chain length

A carbon chain length column was added to the table (not by me), but there are problems with determining them. Number 1 and 2 are pretty easy, although the numbers given vary a lot. Number 3 is so rare that I don't know if such information can be found. Number 4 and 5 are a problem because they are mixtures of residual fuel (number 6) and distillate (usually number 2), with number 5 having less distillate. There doesn't seem to be a fixed ratio of distillate and residual fuel. I think they just add distillate to batches of residual fuel, which vary a lot depending on the oil's source and whether it was vacuum distilled, until they meet the specifications. Number 6 can just be given a lower value, as who knows how long the carbon chains could get. -- Kjkolb 02:24, 13 December 2005 (UTC)

Perhaps you could fill in the lengths for the first to rows and put "various" or some such for the other types Cafe Nervosa | talk 02:48, 13 December 2005 (UTC)
I took my best guesses from the information I have. I don't have much information for number 3. I don't even know if it's pure distillate or if it's mixed with a little number 6. -- Kjkolb 01:08, 14 December 2005 (UTC)

I notice the article for #2 heating oil states chain length from 14 to 20, whereas the article for diesel states chain length from 10 to 15, so perhaps "diesel" and "heating oil" are not exactly the same? N3362 03:44, 16 July 2006 (UTC)

I would advocate adding boiling point ranges to the table and removing carbon number. I'll double check the standard and edit accordingly. --EnergyMan 14:19, 22 August 2006 (UTC)

[edit] Boiling points

Petrocard shows the boiling point of No.2 Diesel to be between 320°F to 700°F (160° C to 371° C) I'm curious if the boiling points mentioned in the article should not be degrees F rather than degrees C. It's difficult to believe the article's quoted temperatures of 370 to 600 °C (698° F - 1112° F) as boiling points. -- 192.136.15.158 (slightly modified by Kjkolb)

I lowered the boiling point range to 175 C, since that's what How Stuff Works has for kerosene, which is fuel oil #1. As for the higher number, it should be remembered that that is the upper boiling point for fuel oil #6, which is very heavy and viscous. -- Kjkolb 19:56, 7 February 2006 (UTC)

I will work on b.p. ranges this week. --EnergyMan 14:19, 22 August 2006 (UTC)

Boiling points for fuel aren't necessarily as important for the folks that use the fuel as flash point. Working on board ships as a marine engineer, I've dealt with MGO and MDO. My understanding of the Coast Guard regulations concerning fuels is the flash point of fuels used cannot be less than 140 degrees fahrenheit. On just about all commercial ships (container ships, tankers, Ro/Ro's, etc...) you'll most often see #6 Diesel used. In dealing with #6, it is often kept in the storage tanks at atmospheric temperature (where it often has the consistency of tar, maybe a little less viscous) then when it comes to pumping it, steam coils in the tanks often heat the fuel to just below the flash point to pump it to the daily storage/settler tanks, then from there it is heated again before being delivered to the Main Engine/Boiler(s). Hengineer 10:33, 29 August 2006 (UTC)

[edit] Change "No" to "#"

Does anyone think this article should be changed from "No" to # for all the fuels, its so hard to read because i constantly keep thinking no.Patcat88 21:38, 18 October 2006 (UTC)

In my research, I mostly saw "No." used. The cases where "#" was used were mostly when there was not much room, such as in charts. I prefer to keep it, but if it is a significant problem for many people, then I suppose it could be changed. The usage should be noted in that case. It might be preferable to use "number" instead of #. I'd have to see how it looks to decide. -- Kjkolb 09:28, 9 November 2006 (UTC)

[edit] Flashpoints

No. 6 oil must, in fact, be stored at around 100°F (37.8°C) heated to 150°F (65.6°C)–250°F (121.1°C) before it can be easily pumped, and in cooler temperatures it can congeal into a tarry semisolid. The flash point of most blends of No. 6 oil is, incidentally, about 150°F (65.6°C).

So #6 must be heated to 150 degrees before it is pumped, but at 150 degrees it also catches fire. Is it always pressurized or something, or is the article being self-conflicting?

note: you are mixing "flash point" with "fire point" or "kindling point" three different temperature points.

Addition: Flash points of these bunker fuels are always more than 60°C for safety reasons since it is also stored at that temperature. However, even if its flash point is close to its storage temperature, it simply means it might flash. The fire point of these fuels can be as much as 30°C above its flash point. The fire point is the temperature where a 'flash' can continuously sustain a fire, whereas flash point just means a 'flash' that happens and disappears almost instantly. Therefore, a fire is not a flash, but a flash can create a fire or flash fire. Hope this clears some doubts Venny85 (talk)