User:Fropuff/Draft 3

From Wikipedia, the free encyclopedia

Draft in progress.


In mathematics, an n-sphere is a generalization of a ordinary sphere to arbitrary dimensions. For any natural number n, an n-sphere of radius r is defined the set of points in (n+1)-dimensional Euclidean space which are at distance r from a fixed point. The radius r may be any positive real number.

  • a 0-sphere is a pair of points {pr, p + r}.
  • a 1-sphere is a circle of radius r.
  • a 2-sphere is an ordinary sphere.
  • a 3-sphere is a sphere in 4-dimensional Euclidean space.
  • and so on...

Spheres for n > 2 are sometimes called hyperspheres.

The n-sphere of unit radius centered at the origin is called the unit n-sphere, denoted Sn. The unit n-sphere is often referred to as the n-sphere. In symbols:

S^n = \left\{ x \in \mathbb{R}^{n+1} : \|x\| = 1\right\}

Contents

[edit] Elementary properties

Take an (n−1)-sphere of radius r inside Rn. The "surface area" of this sphere is

A = \frac{2\pi^{n/2}}{\Gamma(n/2)}r^{n-1}

where Γ is the gamma function. The "volume" of the n+1 dimensional region it encloses is

V = \frac{\pi^{n/2}}{\Gamma(n/2+1)}r^n

[edit] Structure

The unit n-sphere Sn can naturally be regarded as a topological space with the relative topology from Rn+1. As a subspace of Euclidean space it is both Hausdorff and second-countable. Moreover, since it is a closed, bounded subset of Euclidean space it is compact according to the Heine-Borel theorem.

The n-sphere can also be regarded as a smooth manifold of dimension n. In fact, it is a closed, embedded submanifold of Rn+1. This follows from the fact that it is the regular level set of a smooth function (namely the function Rn+1R that sends a vector to its norm squared). Since Sn has codimension 1 in Rn+1 it is a hypersurface.

In addition to its topological and smooth structure, Sn has a natural geometric structure. It inherits a Riemannian metric from the ambient Euclidean space. Specifically, the metric on Sn is the pullback of the Euclidean metric by the inclusion map SnRn+1. This canonical metric on Sn is often called the round metric.

Together with the round metric, Sn is a compact, n-dimensional Riemannian manifold which is isometrically embedded in Rn+1. For specific values on n, Sn may have additional algebraic structure. This will be discussed further below.

[edit] Coordinate charts

As an n-dimensional manifold, Sn should be covered by n-dimensional coordinate charts. That is, an arbirtary point on Sn should be specifiable by n coordinates. Since Sn is not contractible it is impossible to find a single chart that covers the entire space. At least two charts are necessary.

[edit] Stereographic coordinates

The standard coordinate charts on Sn are obtained by stereographic projection.

[edit] Hyperspherical coordinates

[edit] Topology

In topology, any space which is homeomorphic to the unit n-sphere in Euclidean space is called a topological n-sphere (or just an n-sphere if the context is clear). For example, any knot in R3 is a topological 1-sphere, as is the boundary of any polygon. Topological 2-spheres include spheroids and the boundaries of polyhedra.

[edit] To do

  • topological constructions (e.g. one-point compactification, balls glued together, ball with boundary identified)
  • homology groups and cell decomposition
  • homotopy groups and connectivity
  • exotic spheres and differential structures

[edit] Geometry

Spheres occupy a special place in Riemannian geometry. For n ≥ 2, the n-sphere can be characterized as the unique complete, simply connected, n-dimensional Riemannian manifold with constant sectional curvature +1. The n-sphere serves as the model space for elliptic geometry.

[edit] The round metric

The round metric on Sn is the one induced from the Euclidean metric on Rn+1. Concretely, if one identifies the tangent space to a point p on Sn with the orthogonal complement of the vector p in Rn+1 then the round metric at p is just the Euclidean metric restricted to the tangent space.

In stereographic coordinates, the round metric may be written

ds^2 = \left(\frac{2}{1+\|u\|^2}\right)^2\left((du^1)^2 + \cdots + (du^n)^2\right)

[edit] To do

  • curvature tensors and traces
  • isometry group
  • geodesics, great circles, and spherical distance

[edit] Specific spheres

0-sphere 
The pair of points {±1} with the discrete topology. The only sphere which is disconnected. Has a natural Lie group structure; isomorphic to O(1). Parallizable.
1-sphere 
Also known as the unit circle. Has a nontrivial fundamental group. Abelian Lie group structure U(1); the circle group. Topologically equivalent to the real projective line, RP1. Parallizable. SO(2) = U(1).
2-sphere 
Complex structure; see Riemann sphere. Equivalent to the complex projective line, CP1. SO(3)/SO(2).
3-sphere 
Lie group structure Sp(1). Principal U(1)-bundle over the 2-sphere. Parallizable. SO(4)/SO(3) = SU(2) = Sp(1) = Spin(3).
4-sphere 
Equivalent to the quaternionic projective line, HP1. SO(5)/SO(4).
5-sphere 
Principal U(1)-bundle over CP2. SO(6)/SO(5) = SU(3)/SU(2).
6-sphere 
Almost complex structure coming from the set of pure unit octonions. SO(7)/SO(6) = G2/SU(3).
7-sphere 
Topological quasigroup structure as the set of unit octonions. Principal Sp(1)-bundle over S4. Parallizable. SO(8)/SO(7) = SU(4)/SU(3) = Sp(2)/Sp(1) = Spin(7)/G2 = Spin(6)/SU(3).

[edit] Related topics