Frame-dragging

From Wikipedia, the free encyclopedia

General relativity
G_{\mu \nu} + \Lambda g_{\mu \nu}= {8\pi G\over c^4} T_{\mu \nu}\,
Einstein field equations
Introduction to...
Mathematical formulation of...
Phenomena
Kepler problem · Lenses · Waves
Frame-dragging · Geodetic effect
Event horizon · Singularity
Black hole
This box: view  talk  edit

Albert Einstein's theory of general relativity predicts that rotating bodies drag spacetime around themselves in a phenomenon referred to as frame-dragging. The rotational frame-dragging effect was first derived from the theory of general relativity in 1918 by the Austrian physicists Joseph Lense and Hans Thirring, and is also known as the Lense-Thirring effect.[1][2][3] Lense and Thirring predicted that the rotation of an object would alter space and time, dragging a nearby object out of position compared to the predictions of Newtonian physics. The predicted effect is incredibly small — about one part in a few trillion. In order to detect it, it is necessary to look at a very massive object, or build an instrument that is incredibly sensitive. More generally, the subject of field effects caused by moving matter is known as gravitomagnetism.

Contents

[edit] Frame dragging effects

Rotational frame-dragging (the Lense-Thirring effect) appears in the general principle of relativity and similar theories in the vicinity of rotating massive objects. Under the Lense-Thirring effect, the frame of reference in which a clock ticks the fastest is one which is rotating around the object as viewed by a distant observer. This also means that light traveling in the direction of rotation of the object will move around the object faster than light moving against the rotation as seen by a distant observer. It is now the best-known effect, partly thanks to the Gravity Probe B experiment.

Linear frame dragging is the similarly inevitable result of the general principle of relativity, applied to linear momentum. Although it arguably has equal theoretical legitimacy to the "rotational" effect, the difficulty of obtaining an experimental verification of the effect means that it receives much less discussion and is often omitted from articles on frame-dragging (but see Einstein, 1921).[4]

Static mass increase is a third effect noted by Einstein in the same paper.[5] The effect is an increase in inertia of a body when other masses are placed nearby. While not strictly a frame dragging effect (the term frame dragging is not used by Einstein), it is demonstrated by Einstein to derive from the same equation of general relativity. It is also a tiny effect that is difficult to confirm experimentally.

[edit] Experimental tests of frame-dragging

In 1976 Van Patten and Everitt[6][7] proposed to implement a dedicated mission aimed to measure the Lense-Thirring node precession of a pair of counter-orbiting spacecraft to be placed in terrestrial polar orbits and endowed with drag-free apparatus. A somewhat equivalent, cheaper version of such an idea was put forth in 1986 by Ciufolini[8] who proposed to launch a passive, geodetic satellite in an orbit identical to that of the LAGEOS satellite, launched in 1976, apart from the orbital planes which should have been displaced by 180 deg apart: the so-called butterfly configuration. The measurable quantity was, in this case, the sum of the nodes of LAGEOS and of the new spacecraft, later named LAGEOS III, LARES, WEBER-SAT. Although extensively studied by various groups,[9][10] such an idea has not yet been implemented. The butterfly configuration would allow, in principle, to measure not only the sum of the nodes but also the difference of the perigees,[11][12][13] although such Keplerian orbital elements are more affected by the non-gravitational perturbations like the direct solar radiation pressure: the use of the active, drag-free technology would be required. Other proposed approaches involved the use of a single satellite to be placed in near polar orbit of low altitude,[14][15] but such a strategy has been shown to be unfeasible.[16][17][18] In order to enhance the possibilities of being implemented, it has been recently claimed that LARES/WEBER-SAT would be able to measure the effects[19] induced by the multidimensional braneworld model by Dvali, Gabadaze and Porrati[20] and to improve by two orders of magnitude the present-day level of accuracy of the equivalence principle.[21] Such claims have been shown to be highly unrealistic.[22][23]

Limiting ourselves to the scenarios involving existing orbiting bodies, the first proposal to use the LAGEOS satellite and the Satellite Laser Ranging (SLR) technique to measure the Lense-Thirring effect dates back to 1977-1978.[24][25] Tests have started to be effectively performed by using the LAGEOS and LAGEOS II satellites in 1996,[26] according to a strategy[27] involving the use of a suitable combination of the nodes of both satellites and the perigee of LAGEOS II. The latest tests with the LAGEOS satellites have been performed in 2004-2006[28][29] by discarding the perigee of LAGEOS II and using a linear combination[30][31][32][33][34][35] involving only the nodes of both the spacecraft. Although the predictions of general relativity are compatible with the experimental results, the realistic evaluation of the total error raised a debate.[36][37][38][39][40][41] Another test of the Lense-Thirring effect in the gravitational field of Mars, performed by suitably interpreting the data of the Mars Global Surveyor (MGS) spacecraft, has been recently reported.[42] Also such a test raised a debate.[43][44][45] Attempts to detect the Lense-Thirring effect induced by the Sun's rotation on the orbits of the inner planets of the Solar System have been reported as well:[46] the predictions of general relativity are compatible with the estimated corrections to the perihelia precessions,[47] although the errors are still large. The system of the Galilean satellites of Jupiter was investigated as well,[48] following the original suggestion by Lense and Thirring.

The Gravity Probe B experiment[49][50] is currently under way to experimentally measure another gravitomagnetic effect, i.e. the Schiff precession of a gyroscope,[51][52] to an expected 1% accuracy or better. Unfortunately, it seems that such an ambitious goal will not be achieved: indeed, first preliminary results released in April 2007 point toward a so far obtained accuracy of[53] 256-128%, with the hope of reaching about 13% in December 2007.[54] A 1% measurement of the Lense-Thirring effect in the gravitational field of the Earth could be obtained by launching at least two entirely new satellites, preferably endowed with active mechanisms of compensation of the non-gravitational forces, in rather eccentric orbits, as stated in 2005 by Iorio.[55] Recently, the Italian Space Agency (ASI) has announced that the LARES satellite will be launched with a VEGA rocket at the end of 2008 [1]. The goal of LARES is to measure the Lense-Thirring effect to 1%, but there are doubts that this can be achieved[56][57]. Recently, an indirect test of the gravitomagnetic interaction accurate to 0.1% has been reported by Murphy et al[58] with the Lunar Laser Ranging (LLR) technique, but Kopeikin[59] questioned the ability of LLR to be sensible to gravitomagnetism.

[edit] Astronomical evidence

Relativistic Jet. The environment around the AGN where the relativistic plasma is collimated into jets which escape along the pole of the supermassive black hole
Relativistic Jet. The environment around the AGN where the relativistic plasma is collimated into jets which escape along the pole of the supermassive black hole

Relativistic jets may provide evidence for the reality of frame-dragging. Gravitomagnetic forces produced by the Lense-Thirring effect (frame dragging) within the ergosphere of rotating black holes[60][61] combined with the energy extraction mechanism by Sir Roger Penrose[62] have been used to explain the observed properties of relativistic jets. The gravitomagnetic model developed by Reva Kay Williams predicts the observed high energy particles (~GeV) emitted by quasars and active galactic nuclei; the extraction of X-ray and γ-ray photons; the collimated jets about the polar axis; and the asymmetrical formation of jets (relative to the orbital plane).

[edit] Mathematical derivation of frame-dragging

Frame-dragging may be illustrated most readily using the Kerr metric,[63][64] which describes the geometry of spacetime in the vicinity of a mass M rotating with angular momentum J


c^{2} d\tau^{2} = 
\left( 1 - \frac{r_{s} r}{\rho^{2}} \right) c^{2} dt^{2} 
- \frac{\rho^{2}}{\Lambda^{2}} dr^{2} 
- \rho^{2} d\theta^{2}
- \left( r^{2} + a^{2} + \frac{r_{s} r \alpha^{2}}{\rho^{2}} \sin^{2} \theta \right) \sin^{2} \theta \ d\phi^{2} 
+ \frac{2r_{s} r\alpha}{\rho^{2}} d\phi dt

where rs is the Schwarzschild radius


r_{s} = \frac{2GM}{c^{2}}

and where the following shorthand variables have been introduced for brevity


\alpha = \frac{J}{Mc}

\rho^{2} = r^{2} + \alpha^{2} \cos^{2} \theta\,\!

\Lambda^{2} = r^{2} - r_{s} r + \alpha^{2}\,\!

In the non-relativistic limit where M (or, equivalently, rs) goes to zero, the Kerr metric becomes the orthogonal metric for the oblate spheroidal coordinates


c^{2} d\tau^{2} = 
c^{2} dt^{2} 
- \frac{\rho^{2}}{r^{2} + \alpha^{2}} dr^{2} 
- \rho^{2} d\theta^{2}
- \left( r^{2} + \alpha^{2} \right) \sin^{2}\theta d\phi^{2}

We may re-write the Kerr metric in the following form


c^{2} d\tau^{2} = 
\left( g_{tt} - \frac{g_{t\phi}^{2}}{g_{\phi\phi}} \right) dt^{2}
+ g_{rr} dr^{2} + g_{\theta\theta} d\theta^{2} + 
g_{\phi\phi} \left( d\phi + \frac{g_{t\phi}}{g_{\phi\phi}} dt \right)^{2}

This metric is equivalent to a co-rotating reference frame that is rotating with angular speed Ω that depends on both the radius r and the colatitude θ


\Omega = -\frac{g_{t\phi}}{g_{\phi\phi}} = \frac{r_{s} \alpha r}{\rho^{2} \left( r^{2} + \alpha^{2} \right) + r_{s} \alpha^{2} r \sin^{2}\theta}

Thus, an inertial reference frame is entrained by the rotating central mass to participate in the latter's rotation; this is frame-dragging.

The two surfaces on which the Kerr metric appears to have singularities; the inner surface is the spherical event horizon, whereas the outer surface is an oblate spheroid.  The ergosphere lies between these two surfaces; within this volume, the purely temporal component gtt is negative, i.e., acts like a purely spatial metric component.  Consequently, particles within this ergosphere must co-rotate with the inner mass, if they are to retain their time-like character.
The two surfaces on which the Kerr metric appears to have singularities; the inner surface is the spherical event horizon, whereas the outer surface is an oblate spheroid. The ergosphere lies between these two surfaces; within this volume, the purely temporal component gtt is negative, i.e., acts like a purely spatial metric component. Consequently, particles within this ergosphere must co-rotate with the inner mass, if they are to retain their time-like character.

An extreme version of frame dragging occurs within the ergosphere of a rotating black hole. The Kerr metric has two surfaces on which it appears to be singular. The inner surface corresponds to a spherical event horizon similar to that observed in the Schwarzschild metric; this occurs at


r_{inner} = \frac{r_{s} + \sqrt{r_{s}^{2} - 4\alpha^{2}}}{2}

where the purely radial component grr of the metric goes to infinity. The outer surface is not a sphere, but an oblate spheroid that touches the inner surface at the poles of the rotation axis, where the colatitude θ equals 0 or π; its radius is defined by the formula


r_{outer} = \frac{r_{s} + \sqrt{r_{s}^{2} - 4\alpha^{2} \cos^{2}\theta}}{2}

where the purely temporal component gtt of the metric changes sign from positive to negative. The space between these two surfaces is called the ergosphere. A moving particle experiences a positive proper time along its worldline, its path through spacetime. However, this is impossible within the ergosphere, where gtt is negative, unless the particle is co-rotating with the interior mass M with an angular speed at least of Ω. However, as seen above, frame-dragging occurs about every rotating mass and at every radius r and colatitude θ, not only within the ergosphere.

[edit] See also

[edit] References

  1. ^ Thirring, H. Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19, 33 (1918). [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
  2. ^ Thirring, H. Berichtigung zu meiner Arbeit: "Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift 22, 29 (1921). [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
  3. ^ Lense, J. and Thirring, H. Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19 156-63 (1918) [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
  4. ^ Einstein, A The Meaning of Relativity (contains transcripts of his 1921 Princeton lectures).
  5. ^ Einstein, A The Meaning of Relativity, pp95-96, Chapman and Hall, 1987
  6. ^ Van Patten, R.A., Everitt, C.W.F., Possible Experiment with Two Counter-Orbiting Drag-Free Satellites to Obtain a New Test of Einsteins's General Theory of Relativity and Improved Measurements in Geodesy, Phys. Rev. Lett., 36, 629-632, 1976.
  7. ^ Van Patten, R.A., Everitt, C.W.F., A possible experiment with two counter-rotating drag-free satellites to obtain a new test of Einstein’s general theory of relativity and improved measurements in geodesy, Celest. Mech. Dyn. Astron., 13, 429-447, 1976.
  8. ^ Ciufolini I., Measurement of Lense-Thirring Drag on High-Altitude Laser-Ranged Artificial Satellites, Phys. Rev. Lett., 56, 278-281, 1986.
  9. ^ Ries, J.C., Eanes, R.J., Watkins, M.M., Tapley, B., Joint NASA/ASI Study on Measuring the Lense-Thirring Precession Using a Second LAGEOS Satellite, CSR-89-3, Center for Space Research, The University of Texas at Austin, 1989.
  10. ^ Iorio, L., Lucchesi, D.M., and Ciufolini, I., The LARES Mission Revisited: An Alternative Scenario, Class. Quantum Grav., 19, 4311-4325, 2002.
  11. ^ Iorio, L., A new proposal for measuring the Lense-Thirring effect with a pair of supplementary satellites in the gravitational field of the Earth, Phys. Lett. A, 308, 81-84, 2003.
  12. ^ Iorio, L., On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging, Gen. Relativ. Gravit., 35, 1583-1595, 2003.
  13. ^ Iorio, L., Lucchesi, D.M., LAGEOS-type Satellites in Critical Supplementary Orbital Configuration and the Lense--Thirring Effect Detection, Class. Quantum Grav., 20, 2477-2490, 2003.
  14. ^ Lucchesi, D.M., Paolozzi, A., A cost effective approach for LARES satellite, paper presented at XVI Congresso Nazionale AIDAA (24-28 Sept. 2001, Palermo), 2001.
  15. ^ Ciufolini, I., On the orbit of the LARES satellite, (Preprint http://www.arxiv.org/abs/gr-qc/0609081), 2006.
  16. ^ Peterson, G.E., Estimation of the Lense-Thirring precession using laser-ranged satellites, CSR-97-1, Center for Space Research, The University of Texas at Austin, 1997.
  17. ^ Iorio, L., A critical approach to the concept of a polar, low-altitude LARES satellite, Class. Quantum Grav., 19, L175-L183, 2002.
  18. ^ Iorio, L., A comment on the paper "On the orbit of the LARES satellite", by I. Ciufolini, Planet. Space Sci., 55, 1198-1200, 2007.
  19. ^ Ciufolini, I., LARES/WEBER-SAT, frame-dragging and fundamental physics, (Preprint http://arxiv.org/abs/gr-qc/0412001), 2004.
  20. ^ Dvali, G., Gabadadze, G., Porrati, M., 4D Gravity on a Brane in 5D Minkowski Space, Phys. lett. B, 485, 208-214, 2000.
  21. ^ Ciufolini, I., Frame Dragging and Lense-Thirring Effect, Gen. Relativ. Gravit., 36, 2257-2270, 2004.
  22. ^ Iorio, L., On the possibility of testing the Brane-World scenario with orbital motions in the Solar System, J. Cosmol. Astrpart. Phys., 7, 8, 2005.
  23. ^ Iorio, L., LARES/WEBER-SAT and the equivalence principle, Europhys. Lett., 80, 40007, 2007. See also this preprint
  24. ^ Cugusi, L., Proverbio E. Relativistic effects on the Motion of the Earth's. Satellites, paper presented at the International Symposium on Satellite Geodesy in Budapest from June 28 to July 1, 1977, J. of Geodesy, 51, 249-252, 1977.
  25. ^ Cugusi, L., Proverbio, E., Relativistic Effects on the Motion of Earth's Artificial Satellites, Astron. Astrophys, 69, 321-325, 1978.
  26. ^ Ciufolini, I., Lucchesi, D.M., Vespe, F., Mandiello, A., Measurement of Dragging of Inertial Frames and Gravitomagnetic Field Using Laser-Ranged Satellites, Il Nuovo Cimento A, 109, 575-590, 1996.
  27. ^ Ciufolini, I., On a new method to measure the gravitomagnetic field using two orbiting satellites., Il Nuovo Cimento A, 109, 1709-1720, 1996.
  28. ^ Ciufolini, I., and Pavlis, E.C., A confirmation of the general relativistic prediction of the Lense-Thirring effect, Nature, 431, 958-960, 2004
  29. ^ Ciufolini, I., Pavlis, E.C., and Peron, R., Determination of frame-dragging using Earth gravity models from CHAMP and GRACE, New Astron., 11, 527-550, 2006.
  30. ^ Pavlis, E.C., Geodetic contributions to gravitational experiments in space. In: Cianci, R., Collina, R., Francaviglia, M., Fré, P. (Eds.), Recent Developments in General Relativity. 14th SIGRAV Conference on General Relativity and Gravitational Physics, Genova, Italy, September 18-22, 2000. Springer, Milano, pp. 217-233, 2002.
  31. ^ Iorio, L., Morea, A., The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect, Gen. Relativ. Gravit., 36, 1321-1333, 2004. (Preprint http://www.arxiv.org/abs/gr-qc/0304011).
  32. ^ Iorio, L., The new Earth gravity models and the measurement of the Lense-Thirring effect. In: Novello, M., Bergliaffa, S.P., Ruffini, R. (Eds.), On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, World Scientific, Singapore, pp. 1011-1020, 2003. (Preprint http://www.arxiv.org/abs/gr-qc/0308022).
  33. ^ Iorio, L., The impact of the new CHAMP and GRACE Earth gravity models on the measurement of the general relativistic Lense--Thirring effect with the LAGEOS and LAGEOS II satellites. In: Reigber, Ch., Luehr, H., Schwintzer, P., Wickert, J. (Eds.), , Earth Observation with CHAMP. Results from Three Years in Orbit, Springer-Verlag, Berlin, pp. 187-192, 2003. (Preprint http://arxiv.org/abs/gr-qc/0309092)
  34. ^ Ries, J.C., Eanes, R.J., Tapley, B.D., Lense-Thirring Precession Determination from Laser Ranging to Artificial Satellites. In: Ruffini, R., Sigismondi, C. (Eds.), Nonlinear Gravitodynamics. The Lense-Thirring Effect, World Scientific, Singapore, pp. 201-211, 2003a.
  35. ^ Ries, J.C., Eanes, R.J., Tapley, B.D., Peterson, G.E., Prospects for an Improved Lense-Thirring Test with SLR and the GRACE Gravity Mission. In: Noomen, R., Klosko, S., Noll, C., Pearlman, M. (Eds.), Proceedings of the 13th International Laser Ranging Workshop, NASA CP 2003-212248, NASA Goddard, Greenbelt, 2003b. (Preprint http://cddisa.gsfc.nasa.gov/lw13/lw$\_${proceedings}.html$\#$science).
  36. ^ Iorio, L., On the reliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites, New Astron., 10, 603-615, 2005.
  37. ^ Ciufolini, I., and Pavlis, E.C., On the Measurement of the Lense-Thirring effect Using the Nodes of the LAGEOS Satellites in reply to "On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites" by L. Iorio, New Astron., 10, 636-651, 2005.
  38. ^ Lucchesi, D.M., The impact of the even zonal harmonics secular variations on the Lense-Thirring effect measurement with the two Lageos satellites, Int. J. of Mod. Phys. D, 14, 1989-2023, 2005.
  39. ^ Iorio, L., A critical analysis of a recent test of the Lense-Thirring effect with the LAGEOS satellites, J. of Geodesy, 80, 128-136, 2006.
  40. ^ Iorio, L., An assessment of the measurement of the Lense-Thirring effect in the Earth gravity field, in reply to: ``On the measurement of the Lense-Thirring effect using the nodes of the LAGEOS satellites, in reply to ``On the reliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites" by L. Iorio," by I. Ciufolini and E. Pavlis, Planet. Space Sci., 55, 503-511, 2007.
  41. ^ Iorio, L., On some critical issues of the LAGEOS/LAGEOS II Lense-Thirring experiment, 2007. (Preprint http://arxiv.org/abs/0710.1022).
  42. ^ Iorio, L., A note on the evidence of the gravitomagnetic field of Mars, Class. Quantum Grav., 23, 5451-5454, 2006.
  43. ^ Iorio, L., Testing frame-dragging with the Mars Global Surveyor spacecraft in the gravitational field of Mars. In: Iorio, L. (Ed.), The Measurement of Gravitomagnetism: A Challenging Enterprise, Nova publishers, Hauppauge (NY), pp. 177-187, 2007. (Preprint http://www.arxiv.org/abs/gr-qc/0701042), 2007.
  44. ^ Krogh, K., Comment on 'Evidence of the gravitomagnetic field of Mars', Class. Quantum Grav., 24 , 5709-5715, 2007.
  45. ^ Iorio, L., Reply to "Iorio's "high-precision measurement" of frame dragging with the Mars Global Surveyor", by Kris Krogh, J. Graviit. Phys., at press, 2008 (Preprint http://www.arxiv.org/abs/gr-qc/0701146).
  46. ^ Iorio, L., First preliminary tests of the general relativistic gravitomagnetic field of the Sun and new constraints on a Yukawa-like fifth force from planetary data, Planet. Space Sci., 55, 1290-1298, 2007.
  47. ^ Pitjeva, E.V., Relativistic Effects and Solar Oblateness from Radar Observations of Planets and Spacecraft. Astron. Lett., 31, 340-349, 2005.
  48. ^ Iorio, L., and Lainey, V., The Lense-Thirring effect in the Jovian system of the Galilean satellites and its measurability, Int. J. Mod. Phys. D, 14, 2039-2050, 2005.
  49. ^ Everitt, C.W.F, The Gyroscope Experiment I. General Description and Analysis of Gyroscope Performance. In: Bertotti, B. (Ed.), Proc. Int. School Phys. "Enrico Fermi" Course LVI. New Academic Press, New York, pp. 331-360, 1974. Reprinted in: Ruffini, R.J., Sigismondi, C. (Eds.), Nonlinear Gravitodynamics. The Lense-Thirring Effect. World Scientific, Singapore, pp. 439-468, 2003.
  50. ^ Everitt, C.W.F., et al., Gravity Probe B: Countdown to Launch. In: Laemmerzahl, C., Everitt, C.W.F., Hehl, F.W. (Eds.), Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space. Springer, Berlin, pp. 52-82, 2001.
  51. ^ Pugh, G.E., Proposal for a Satellite Test of the Coriolis Prediction of General Relativity, WSEG, Research Memorandum No. 11, 1959. Reprinted in: Ruffini, R.J., Sigismondi, C. (Eds.), Nonlinear Gravitodynamics. The Lense-Thirring Effect. World Scientific, Singapore, pp. 414-426, 2003.
  52. ^ Schiff, L., On Experimental Tests of the General Theory of Relativity, Am. J. of Phys., 28, 340-343, 1960.
  53. ^ Muhlfelder, B., Mac Keiser, G., and Turneaure, J., Gravity Probe B Experiment Error, poster L1.00027 presented at the American Physical Society (APS) meeting in Jacksonville, Florida, on 14-17 April 2007, 2007.
  54. ^ StanfordNews 4/14/07, downloadable at http://einstein.stanford.edu/
  55. ^ Iorio, L., The impact of the new Earth gravity models on the measurement of the Lense–Thirring effect with a new satellite, New Astron., 10 , 616-635, 2005.
  56. ^ Iorio, L., LARES approved: towards a 1% measurement of frame dragging?, (Preprint http://arxiv.org/abs/0802.2031)
  57. ^ Iorio, L., Perspectives in measuring frame-dragging after the approval of the LARES mission, (Preprint http://arxiv.org/abs/0803.3278)
  58. ^ Murphy, T.W., Nordtvedt, K., and Turyshev, S.G., The Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit, Phys. Rev. Lett., 98, 071102, 2007.
  59. ^ Kopeikin, Comment on "The gravitomagnetic influence on gyroscopes and on the lunar orbit",Phys. Rev. Lett., 98, 229001, 2007.
  60. ^ Williams, R. K. (1995, May 15). Extracting X rays, Ύ rays, and relativistic e-e+ pairs from supermassive Kerr black holes using the Penrose mechanism. Physical Review, 51(10), 5387-5427.
  61. ^ Williams, R. K. (2004, August 20). Collimated escaping vortical polar e-e+ jets intrinsically produced by rotating black holes and Penrose processes. The Astrophysical Journal, 611, 952-963.
  62. ^ Penrose, R. (1969). Gravitational collapse: The role of general relativity. Nuovo Cimento Rivista, Numero Speciale 1, 252-276.
  63. ^ Kerr, RP (1963). "Gravitational field of a spinning mass as an example of algebraically special metrics". Physical Review Letters 11: 237–238. 
  64. ^ Landau, LD; Lifshitz, EM (1975). The Classical Theory of Fields (Course of Theoretical Physics, Vol. 2), revised 4th English ed., New York: Pergamon Press, pp. 321–330. ISBN 978-0-08-018176-9. 

[edit] External links

An early version of this article was adapted from public domain material from http://science.msfc.nasa.gov/newhome/headlines/ast06nov97_1.htm