User:Foxjwill/Math stuff

From Wikipedia, the free encyclopedia

Contents

[edit] Total derivative

\frac{\mathrm df}{\mathrm dx}= \frac{\partial f}{\partial x}+\sum_{j=1}^k \frac{\partial y_j}{\partial x}\frac{\partial f}{\partial y_j},

where f is a function of k variables.

[edit] Example 1

 \frac{\mathrm df}{\mathrm dx}=\frac{\partial f}{\partial x} + \frac{\partial y}{\partial x} \frac{\partial f}{\partial y},

where f: \Bbb{R}, \Bbb{R} \to \Bbb{R}.

[edit] Example 2

Given f(x,y) = x^3 - y^2\,, find \textstyle \frac{\mathrm df}{\mathrm dx}.

Begin with the definition of the total derivative:  {\textstyle \frac{\mathrm df}{\mathrm dx}=\frac{\partial f}{\partial x} + \frac{\partial y}{\partial x} \frac{\partial f}{\partial y} }. Notice that in order to continue, we need to calculate \textstyle \frac{\partial f}{\partial x},\, \textstyle \frac{\partial y}{\partial x},\, and \textstyle \frac{\partial f}{\partial y}.


\begin{align}
  \frac{\partial f}{\partial x} &= \frac{\partial}{\partial x}\left( x^3 \right)\\
                                &= 3x^2
\end{align}



\begin{align}
  \frac{\partial f}{\partial y} &= \frac{\partial}{\partial x}\left( y^2 \right)\\
                                &= -2y
\end{align}

\begin{align}
  y^2                             &= x^3\\
  2y\frac{\partial y}{\partial x} &= 3x^2\\
  \frac{\partial y}{\partial x} &= \frac{3x^2}{2y}
 \end{align}

Plugging the results into the definition,  {\textstyle \frac{\mathrm df}{\mathrm dx} = 3x^2 + \frac{3x^2}{-2y} \left( 2y \right)}, we find that  {\textstyle \frac{\mathrm df}{\mathrm dx} = 0}.

[edit] Continued fractions


L = 
0 + \cfrac{1}{
  0 + \cfrac{1}{
    0 + \cfrac{1}{
      0 + \cfrac{1}{\ddots \,}
    }
  }
}



\frac{1}{L} = 
\cfrac{1}{
  0 + \cfrac{1}{
    0 + \cfrac{1}{
      0 + \cfrac{1}{
        0 + \cfrac{1}{\ddots \,}
      }
    }
  }
}
= L

\begin{align}
  L^2 &= 1\\
  L   &= \pm \sqrt{1}
\end{align}

Because L can't be negative, L = 1.


\therefore\ 
0 + \cfrac{1}{
  0 + \cfrac{1}{
    0 + \cfrac{1}{
      0 + \cfrac{1}{\ddots \,}
    }
  }
}
 = 1

[edit] Tetration and beyond

  • \forall a,b \in \mathbb{N}
    \begin{array}{lcll}
a\cdot b            &=& a + a\cdot (b-1)            &,a\cdot 0 = 0\\
a^b                 &=& a\cdot a^{b-1}            &,a^0 = 1\\
a\uparrow\uparrow b &=& a^{a\uparrow\uparrow (b-1)} &,a\uparrow\uparrow 0 = 1
\end{array}

[edit] Polynomials and their derivatives

The derivative of a polynomial,

\frac{d}{dt}: \mathbf{P}^n \to \mathbf{P}^n,

can be defined as

\frac{d}{dt}(a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n) = a_1 + a_2 x + a_3 x^2 + \cdots + a_{n} x^{n-1}.

If we use the standard ordered basis

\mathbf{e} = \{1,x,x^2,\ldots,x^n\},

then

(a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n)_\mathbf{e}

can be written as


\begin{pmatrix}
    a_0\\
    a_1\\
    a_2\\
    \vdots\\
    a_n
\end{pmatrix}
,

and \frac{d}{dt} as

\frac{d}{dt}: 
\begin{pmatrix}
    a_0\\
    a_1\\
    a_2\\
    \vdots\\
    a_n
\end{pmatrix}
\mapsto
 \begin{pmatrix}
    a_1\\
    a_2\\
    \vdots\\
    a_n\\
    0
\end{pmatrix}
.

Since

A=\begin{pmatrix}
0      & 1      & 0      & \cdots & 0\\
0      & 0      & 1      & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0      & 0      & 0      & \cdots & 1\\
0      & 0      & 0      & \cdots & 0\\
\end{pmatrix}

satisfies


A 
\begin{pmatrix}
    a_0\\
    a_1\\
    a_2\\
    \vdots\\
    a_n
\end{pmatrix}
=
 \begin{pmatrix}
    a_1\\
    a_2\\
    \vdots\\
    a_n\\
    0
\end{pmatrix}

, A represents \frac{d}{dt}.

[edit] Wedge product


\mathbf{u} = u_1 \mathbf{e_1} + u_2 \mathbf{e_2} + u_3 \mathbf{e_3}


\mathbf{v} = v_1 \mathbf{e_1} + v_2 \mathbf{e_2} + v_3 \mathbf{e_3}



\begin{align}
    \mathbf{u}\wedge\mathbf{v} &= (u_1 v_2 - v_1 u_2)\wedge\mathbf{e_1} + (u_2 v_3 - v_2 u_3)\wedge\mathbf{e_2} + (u_3 v_1 - v_1 u_3)\wedge\mathbf{e_3}\\
                               &= u_1 v_1 
\end{align}

[edit] General second degree linear ordinary differential equation

A second degree linear ordinary differential equation is given by

y'' + a(x) y' + b(x) y = c(x).\,

One way to solve this is to look for some integrating factor, M, such that

My'' + Ma(x)y' + Mb(x)y = (My)'' = Mc(x).\,

Expanding (My)'' and setting it equal to

My'' + Ma(x)y' + Mb(x)y = My'' + 2My' + M''y\,


\left \{
\begin{align}
2M' &= M a(x)\\
M'' &= M b(x)\\
\end{align} \right.

M''a(x) = 2M'b(x)

u = M'


\frac{du}{dx} a(x) = 2u b(x)


\frac{1}{2}{\int \frac{du}{u} } = {\int \frac{b(x)}{a(x)} dx}


\frac{1}{2} \ln u = {\int \frac{b(x)}{a(x)} dx}


u = e^{2{\int \frac{b(x)}{a(x)} dx}}


M' = e^{2{\int \frac{b(x)}{a(x)} dx}}


M = {\int e^{2{\int \frac{b(x)}{a(x)} dx}} dx}


\begin{align}
    (My)'' &= Mc(x)\\
    (My)'  &= {\int Mc(x) dx} + C_1\\
    My     &={\int {\int Mc(x) dx}dx} + C_1 x + C_2\\
\end{align}


y = \frac{{\int {\int {\int c(x) e^{2{\int \frac{b(x)}{a(x)} dx}} dx} dx}dx} + C_1 x + C_2}{{\int e^{2{\int \frac{b(x)}{a(x)} dx}} dx}}

[edit] Differential example

The key to differentials is to think of x as a function from some real number p to itself; and dx as a function of some that same real number p to a linear map \mathbf{P}: \mathbb{R} \mapsto \mathbb{R}. Since all linear maps from \mathbb{R} to \mathbb{R} can be written as a 1\times 1 matrix, we can define \mathbf{P} as [p] and dx as


dx: \mathbb{R} \rightarrow \mathbb{R}^{1\times 1}

dx: p \mapsto [1]

(As a side note, the value of dx, and similarly for all differentials, at p is usually written dxp.)

Without loss of generality, let's take the function f(x) = x2. Differentiating, we have

\frac{df}{dx} = 2x.

Since we defined dxp as [1] and x(p) as p, we can rewrite the derivative as

df_p [1]^{-1} = 2x(p).\,

Multiplying both sides by [1], we have

df_p = 2x(p) [1].\,

And voilĂ ! We can say that for any function f: \mathbb{R} \rightarrow \mathbb{R},

df_p = \left[f'(x(p))\right] = f'(x(p))dx_p