FOXN3
From Wikipedia, the free encyclopedia
Checkpoint suppressor 1
|
||||||||||||||
Identifiers | ||||||||||||||
Symbol(s) | CHES1; C14orf116; FOXN3; PRO1635 | |||||||||||||
External IDs | OMIM: 602628 MGI: 1918625 HomoloGene: 3809 | |||||||||||||
|
||||||||||||||
RNA expression pattern | ||||||||||||||
Orthologs | ||||||||||||||
Human | Mouse | |||||||||||||
Entrez | 1112 | 71375 | ||||||||||||
Ensembl | ENSG00000053254 | ENSMUSG00000033713 | ||||||||||||
Uniprot | O00409 | Q499D0 | ||||||||||||
Refseq | NM_005197 (mRNA) NP_005188 (protein) |
NM_183186 (mRNA) NP_899009 (protein) |
||||||||||||
Location | Chr 14: 88.69 - 88.95 Mb | Chr 12: 99.6 - 99.85 Mb | ||||||||||||
Pubmed search | [1] | [2] |
Checkpoint suppressor 1, also known as CHES1, is a human gene.[1]
This gene is a member of the forkhead/winged helix transcription factor family. Checkpoints are eukaryotic DNA damage-inducible cell cycle arrests at G1 and G2. Checkpoint suppressor 1 suppresses multiple yeast checkpoint mutations including mec1, rad9, rad53 and dun1 by activating a MEC1-independent checkpoint pathway. Alternative splicing is observed at the locus, resulting in distinct isoforms.[1]
Contents |
[edit] See also
[edit] References
[edit] Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. PMID 8125298.
- Field LL, Tobias R, Thomson G, Plon S (1996). "Susceptibility to insulin-dependent diabetes mellitus maps to a locus (IDDM11) on human chromosome 14q24.3-q31.". Genomics 33 (1): 1–8. doi: . PMID 8617492.
- Hillier LD, Lennon G, Becker M, et al. (1997). "Generation and analysis of 280,000 human expressed sequence tags.". Genome Res. 6 (9): 807–28. PMID 8889549.
- Pati D, Keller C, Groudine M, Plon SE (1997). "Reconstitution of a MEC1-independent checkpoint in yeast by expression of a novel human fork head cDNA.". Mol. Cell. Biol. 17 (6): 3037–46. PMID 9154802.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library.". Gene 200 (1-2): 149–56. PMID 9373149.
- Yu Y, Zhang C, Zhou G, et al. (2001). "Gene expression profiling in human fetal liver and identification of tissue- and developmental-stage-specific genes through compiled expression profiles and efficient cloning of full-length cDNAs.". Genome Res. 11 (8): 1392–403. doi: . PMID 11483580.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi: . PMID 12477932.
- Heilig R, Eckenberg R, Petit JL, et al. (2003). "The DNA sequence and analysis of human chromosome 14.". Nature 421 (6923): 601–7. doi: . PMID 12508121.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi: . PMID 14702039.
- Lehner B, Sanderson CM (2004). "A protein interaction framework for human mRNA degradation.". Genome Res. 14 (7): 1315–23. doi: . PMID 15231747.
- Suzuki Y, Yamashita R, Shirota M, et al. (2004). "Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions.". Genome Res. 14 (9): 1711–8. doi: . PMID 15342556.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi: . PMID 15489334.
- Scott KL, Plon SE (2005). "CHES1/FOXN3 interacts with Ski-interacting protein and acts as a transcriptional repressor.". Gene 359: 119–26. doi: . PMID 16102918.
- Busygina V, Kottemann MC, Scott KL, et al. (2007). "Multiple endocrine neoplasia type 1 interacts with forkhead transcription factor CHES1 in DNA damage response.". Cancer Res. 66 (17): 8397–403. doi: . PMID 16951149.
- Katoh H, Ojima H, Kokubu A, et al. (2007). "Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets.". Gastroenterology 133 (5): 1475–86. doi: . PMID 17983802.
[edit] External links
|