Talk:Fourier optics

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
Start This article has been rated as start-Class on the assessment scale.
High This article is on a subject of high importance within physics.

Help with this template This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.

Contents

[edit] Cleanup

Tagged June, 2006. This is an important topic in optics and needs to be expanded. The current material is okay for a simple introduction, but needs rewriting in more formal tone. -dmmaus 06:04, 20 June 2006 (UTC)

  • Tone seems better, though the language in the intro is a bit hard to understand and might contain grammar errors. The layman will probably be scratching his head afetr reading this. Heaven knows that I was. --Lendorien 19:55, 14 February 2007 (UTC)

[edit] Importance rating

I have just rated this article as high. It was hard to choose between high and mid, but I went with high because the whole of optics pretty much depends on it once you get passed some basic geometry. That being said, Fourier optics is taking up a disturbing amount of my time at the moment, so I may have an inflated view of it's importance. --Apyule 11:07, 24 April 2007 (UTC)

I would agree, and I have actually done any for quite a while. We'll see who finds time first, then. --Osquar F 07:17, 4 June 2007 (UTC)

[edit] Simple tips in learning Fourier optics

A few key points helped me learn Fourier optics:

  • Firstly, clarify the simple distinction that I learned early on when studying Fourier optics which is quite simply that Fourier optics addresses the wave properties of light that geometrical optics can't.
  • Then add the Fourier analysis to an aperture / light system to generate a spatial Fresnel integral.
  • Go into the far field and the wavefront curvature drops away and the diffraction can then is described by Fraunhofer diffraction.

This helped me to get off on the right foot. There is an excellent online book on the subject worth a browse [here] that may form a decent reference. PD 22:57, 22 June 2007 (UTC)

[edit] Light wavelenght dependance?

I've seen a demo of this done with a microscope, but it was with monochromatic light. It seems like the idea is that diffraction deflects rays based on the spatial frequency of the image which is what causes the transform. If so, it seems like this would only work with monochromatic light and that white light would lead to a blurry Fourier transform. Is that correct? —Ben FrantzDale 14:13, 28 September 2007 (UTC)

[edit] hard to understand

As someone who works with Fourier optics all the time, I've got to say this latest re-write of the article has made it really hard to understand now for anyone who is not familiar with the field. I realise it is a hard subject to define without getting into the technical details. I would suggest that the opening paragraph is redone so it is similar to that of version 29th June 2007. Then the real detail can left to those who really want to know. Doc phil 10:40, 5 October 2007 (UTC)


[edit] Time to Revisit this Article?

I submit that the ratings on this article should be revisited at this time. I'm not convinced that it is any longer confusing or unclear, at least insofar as sections 2-8 are concerned. —Preceding unsigned comment added by 71.177.102.80 (talk) 01:43, 4 April 2008 (UTC)