Fluidyne

From Wikipedia, the free encyclopedia

This is a Fluidyne variant with a solid displacer piston (3). In figure -a-, as the displacer moves from the cold compression space (2), to the hot expansion space (4) in figure -b-, the temperature of the gaseous working fluid is increased. This increases the pressure of the gaseous working fluid, and as it expands, work is done on the (red) liquid piston as it is pushed through the tube.
This is a Fluidyne variant with a solid displacer piston (3). In figure -a-, as the displacer moves from the cold compression space (2), to the hot expansion space (4) in figure -b-, the temperature of the gaseous working fluid is increased. This increases the pressure of the gaseous working fluid, and as it expands, work is done on the (red) liquid piston as it is pushed through the tube.
A Concentric-cylinder Fluidyne Pumping engine
A Concentric-cylinder Fluidyne Pumping engine

A Fluidyne Engine is a beta or gamma type Stirling Engine with one or more liquid pistons. It contains a working gas, and either two liquid pistons or one liquid piston and a displacer. In the classic configuration, the work produced via the water pistons is integrated with a water pump. The simple pump is external to the engine, and consists of two check valves, one on the intake and one on the outlet. In the engine, the loop of oscillating liquid can be thought of as acting as a displacer piston. The liquid in the single tube extending to the pump acts as the power piston. Traditionally the pump is open to the atmosphere, and the hydraulic head is small, so that the absolute engine pressure is close to atmospheric pressure. [1]

[edit] See also

Languages