User:Flippin42/formulæ

From Wikipedia, the free encyclopedia

Contents

[edit] e^gamma with products to infinity of kth roots of e




\lim_{n\to\infty} \left ( \prod_{k=1}^{n+1} \sqrt[k]{e} - \prod_{k=1}^{n} \sqrt[k]{e} \right ) = e^\gamma



[edit] nth triangular/n




\frac{\displaystyle{\sum_{k=1}^{n+1}} k}{n+1} - \frac{\displaystyle{\sum_{k=1}^n} k}{n} = 0.5



[edit] 2nd order tetration (n to the n) limit to infinity e relationship




\lim_{n\to\infty} \left ( \frac{(n+1)^{n+1}}{n^n} - \frac{n^n}{(n-1)^{n-1}} \right ) = e



[edit] nth root of n! limit to 1/e




\lim_{n\to\infty} \left ( \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} \right ) = \frac{1}{e}




[edit] consecutive powers sum




\lim_{n\to\infty} \left ( \frac{(n+4)^{n+1} - \underbrace{3^{n+1} + 4^{n+1} + 5^{n+1} + \dotsb}_{n+1}}{(n+3)^n - \underbrace{3^n + 4^n + 5^n + \dotsb}_n}    -    \frac{(n+3)^n - \underbrace{3^n + 4^n + 5^n + \dotsb}_n}{(n+2)^{n-1} - \underbrace{3^{n-1} + 4^{n-1} + 5^{n-1} + \dotsb}_{n-1}}     \right ) = e


OR...




\lim_{n\to\infty} \left ( \frac{(n+4)^{n+1} - \displaystyle{\sum_{k=3}^{n+3} k^{n+1}}}
{(n+3)^n - \displaystyle{\sum_{k=3}^{n+2} k^n}}  
  -  
\frac{(n+3)^n - \displaystyle{\sum_{k=3}^{n+2} k^n}}{(n+2)^{n-1} - \displaystyle{\sum_{k=3}^{n+1} k^{n-1}}}     \right ) = e



[edit] Euler's formula




e^{i\pi} + 1 = 0 \!



[edit] Power Towers



\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}}}}}}}}}}}}}}} \approx 2\!




\sqrt{2}^{\overbrace{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}}}^\infty} = 2\!



\begin{align}
\sqrt{2}\uparrow\uparrow\infty  &=  2              \\

\sqrt[e]{e} &= 1.444667861...  \\

\sqrt[e]{e}\uparrow\uparrow\infty  &=  e    \\ 

e^{-e} = \frac{1}{e^e} &= 0.065988035...    \\

\frac{1}{e^e}\uparrow\uparrow\infty  &=  \frac{1}{e}    \\ 

0.001\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.001051251058... \\
0.992764518...
\end{Bmatrix} 

; \quad Difference = 0.991713267... \\

0.01\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.01309252... \\
0.941488368...
\end{Bmatrix} 

; \quad Difference = 0.928395848... \\

0.015\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.021585386... \\
0.91333526...
\end{Bmatrix} 

; \quad Difference = 0.891749873... \\

0.02\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.03146156... \\
0.884194383...
\end{Bmatrix} 

; \quad Difference = 0.852732823... \\

0.03\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.056132967... \\
0.821327373...
\end{Bmatrix} 

; \quad Difference = 0.765194406... \\

0.04\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.08960084... \\
0.749451269...
\end{Bmatrix} 

; \quad Difference = 0.659850428... \\

0.045\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.111117455... \\
0.708513944...
\end{Bmatrix} 

; \quad Difference = 0.597396489... \\

0.05\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.137359395... \\
0.662660838...
\end{Bmatrix} 

; \quad Difference = 0.525301443... \\

0.055\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.170720724... \\
0.609472066...
\end{Bmatrix} 

; \quad Difference = 0.438751341... \\

0.06\uparrow\uparrow\infty  &\in 

\begin{Bmatrix}
0.216898064... \\
0.54322953...
\end{Bmatrix} 

; \quad Difference = 0.326331465... \\



\lim_{x\to 0} (x\uparrow\uparrow\infty) &\in 

\begin{Bmatrix}
0 \\
1
\end{Bmatrix} 


\end{align}




\int_0^{\frac{1}{e^e}} \biggl [ (x \uparrow\uparrow \infty)_{Upper} - (x \uparrow\uparrow \infty)_{Lower} \biggr ] \cdot  dx \approx 0.045405

[edit] Text




\lim_{Uncertainty\to\infty} \sum_{then}^{now} Your Mistakes = Unbearable





\lim_{Hate\to\infty} \prod_{lies}^{truth} Anything \; You've \; Said = Ammunition





\lim_{Apologies\to Excuses} Familiarity = Contempt


[edit] Daniel Bennett




\mathfrak{Daniel \; Bennett} \qquad  \mathbb{DANIEL \; BENNETT}  \qquad  \mathcal{DANIEL \quad BENNETT}


[edit] Girls = Evil




\begin{align}
Girls &= Time \times Money\\
Time &= Money\\
\therefore Girls &= Money^2\\
Money &= \sqrt{Evil}\\
\therefore Girls &= \sqrt{Evil}^2\\
Girls &= Evil
\end{align}