[edit] Summary
Arriving at the solution of minimizing total distance from a point to the three vertex of a given triangle(Fermat's Problem) :
Rotate one side of the triangle with the arbitary point F for 60 degrees, and the distance to minimize is the shortest path from A to D. Hence the solution is when it become a straight line.
N.B. all information are included in the metadata of this svg file.
[edit] Source
The source is licensed under the same license as the image. Feel free to edit, fix, or improve it!
[edit] fermat_point_derivation.euk
frame(-0.5, -6, 7, 4.5)
B C A triangle(6, 75:, 35:)
C B D equilateral
F = point(2.5, 35:)
F B G equilateral
color(black)
draw(segment(A, B))
draw(segment(A, C))
thickness(2)
draw(segment(A, F))
draw(segment(F, G), dashed)
thickness(0.5)
draw(segment(C, D), dashed)
color(red)
draw(B, C, F)
color(blue)
draw(B, D, G)
thickness(2)
draw(segment(G, D))
thickness(0.5)
color(red)
mark(segment(B, F), simple)
mark(segment(F, C), double)
mark(segment(B, C), triple)
color(blue)
mark(segment(B, G), simple)
mark(segment(G, D), double)
mark(segment(B, D), triple)
color(black)
mark(segment(F, G), simple)
mark(D, B, C, simple, 0.8)
mark(G, B, F, simple, 1.5)
label(A, 0.2, 90:)
label(B, 0.2, 180:)
label(C, 0.2, 0:)
label(D, 0.2, 270:)
label(F, 0.2, 30:)
label(G, 0.2, 0:)
[edit] Instruction
- Run eukleides and compile it into en:PSTricks.
- Paste the resulting code in the following en:TeX file and compile it into eps.
\documentclass{article}
\usepackage{pstricks}
\usepackage{color}
\begin{document}
\pagestyle{empty}
\colorbox{white}{
%Paste the code here
}
\end{document}
- Import the eps file using en:Scribus. (Remember to install en:ghostscript also and configure the path to ghostscript correctly in Scribus's Preferences)
- And then export it to en:svg.
- Post-process using en:Inkscape.
[edit] Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:
You may select the license of your choice.
|
Click on a date/time to view the file as it appeared at that time.
The following pages on the English Wikipedia link to this file (pages on other projects are not listed):