Fermat cubic

From Wikipedia, the free encyclopedia

In geometry, the Fermat cubic, named after Pierre de Fermat, is a surface defined by

 x^3 + y^3 + z^3 = 1. \

Methods of algebraic geometry provide the following parametrization of Fermat's cubic:

 x(s,t) = {3 t - {1\over 3} (s^2 + s t + t^2)^2 \over t (s^2 + s t + t^2) - 3}
 y(s,t) = {3 s + 3 t + {1\over 3} (s^2 + s t + t^2)^2 \over t (s^2 + s t + t^2) - 3}
 z(s,t) = {-3 - (s^2 + s t + t^2) (s + t) \over t (s^2 + s t + t^2) - 3}.

Image:FermatCubicSurface.PNG

Fermat cubic surface.


Languages