Favard operator

From Wikipedia, the free encyclopedia

In functional analysis, a branch of mathematics, the Favard operators are defined by:

[\mathcal{F}_n(f)](x) = \frac{\sqrt{n}}{n\sqrt{c\pi}} \sum_{k=-\infty}^\infty {\exp{\left({\frac{-n}{c} {\left({\frac{k}{n}-x}\right)}^2 }\right)} f\left(\frac{k}{n}\right)}

where x\in\mathbb{R}, n\in\mathbb{N}, and c\in\mathbb{R^{+}}.[1] They are named after Jean Favard.

[edit] Generalizations

A common generalization is:

[\mathcal{F}_n(f)](x) = \frac{1}{n\gamma_n\sqrt{2\pi}} \sum_{k=-\infty}^\infty {\exp{\left({\frac{-1}{2\gamma_n^2} {\left({\frac{k}{n}-x}\right)}^2 }\right)} f\left(\frac{k}{n}\right)}

where (\gamma_n)_{n=1}^\infty is a positive sequence that converges to 0.[1] This reduces to the classical Favard operators when \gamma_n^2=c/(2n).

[edit] References

  • Favard, Jean (1944). "Sur les multiplicateurs d'interpolation". Journal de Mathematiques Pures et Appliquees 23 (9): 219-247.  (French) This paper also discussed Szász-Mirakyan operators, which is why Favard is sometimes credited with their development (eg Favard-Szász operators).

[edit] Footnotes

  1. ^ a b Nowak, Grzegorz; Aneta Sikorska-Nowak (November 2007). "On the generalized Favard-Kantorovich and Favard-Durrmeyer operators in exponential function spaces". Journal of Inequalities and Applications 2007. 
This mathematical analysis-related article is a stub. You can help Wikipedia by expanding it.