Fatou-Bieberbach domain
From Wikipedia, the free encyclopedia
In mathematics, a Fatou-Bieberbach domain comprises a proper subdomain of which is biholomorphically equivalent to ; i.e. one calls an open a Fatou-Bieberbach domain if there exists a bijective holomorphic function and a holomorphic inverse function .
[edit] History
As a consequence of the Riemann mapping theorem, there are no Fatou-Bieberbach domains in the case of n = 1. Pierre Fatou and Ludwig Bieberbach first explored such domains in higher dimensions in the 1920s, hence the name given to them later. Since the 1980s, Fatou-Bieberbach domains have again become the subject of mathematical research.
[edit] References
- Fatou, Pierre: "Sur les fonctions méromorphs de deux variables. Sur certains fonctions uniformes de deux variables." C.R. Paris 175 (1922)
- Bieberbach, Ludwig: "Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte volumtreue Abbildung des auf einen Teil seiner selbst vermitteln". Preussische Akademie der Wissenschaften. Sitzungsberichte (1933)
- Rosay, J.-P. and Rudin, W: "Holomorphic maps from to ". Trans. A.M.S. 310 (1988)