Fatou-Bieberbach domain

From Wikipedia, the free encyclopedia

In mathematics, a Fatou-Bieberbach domain comprises a proper subdomain of \mathbb{C}^n which is biholomorphically equivalent to \mathbb{C}^n; i.e. one calls an open \Omega \subset \mathbb{C}^n \; (\Omega \neq \mathbb{C}^n) a Fatou-Bieberbach domain if there exists a bijective holomorphic function f:\Omega \rightarrow \mathbb{C}^n and a holomorphic inverse function f^{-1}:\mathbb{C}^n \rightarrow \Omega.

[edit] History

As a consequence of the Riemann mapping theorem, there are no Fatou-Bieberbach domains in the case of n = 1. Pierre Fatou and Ludwig Bieberbach first explored such domains in higher dimensions in the 1920s, hence the name given to them later. Since the 1980s, Fatou-Bieberbach domains have again become the subject of mathematical research.

[edit] References

  • Fatou, Pierre: "Sur les fonctions mĂ©romorphs de deux variables. Sur certains fonctions uniformes de deux variables." C.R. Paris 175 (1922)
  • Bieberbach, Ludwig: "Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte volumtreue Abbildung des \mathcal{R}_4 auf einen Teil seiner selbst vermitteln". Preussische Akademie der Wissenschaften. Sitzungsberichte (1933)
  • Rosay, J.-P. and Rudin, W: "Holomorphic maps from \mathbb{C}^n to \mathbb{C}^n". Trans. A.M.S. 310 (1988)