Image:Exponential Function (Abs Imag Part at Infinity) Density.png

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.
Description

Diagram of the absolute value of the real part of the exponential function in the complex plane, as the operand approaches infinity. The plot is given by:

z=\bigg|\operatorname{Im} \left (\exp \left( \frac{1}{x + i y} \right)\right)\bigg|

The colour code is based on the arctan function and therefore emphasises changes at small values more than changes at large values. Green is smallest, then blue, red and yellow (largest).

Source

Own drawing, Plotted in MuPAD, code given below.

Date

20/04/2007

Author

Inductiveload

Permission
(Reusing this image)
Public domain I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

Other versions See Exponential function for related graphics.

[edit] MuPAD Code

 f := abs(Im(exp(1/(x+I*y)))):

  ylimit := 1:
  xlimit := 1:
  mesh := 1000:     //resolution of density plot
   
a    := 1:   //change this to adjust the colour band drop-of rate
fmin := 0:  //minimum value of colour function (i.e the one with arctan in it)
fmax := 1:  //maximum value of colour function
range:= 1:  //for brevity
  
colour := proc(c)
 begin
    if   c <  fmin then
       return ([1, 0, 0])  //this term may not be needed, but it means we can deal with slightly under-limit values
    elif c <= fmin + 1*range/6  then 
       return ([1, abs(sin((c-fmin)*(PI/2)/(range/6))^a), 0])
    elif c <= fmin + 2*range/6 then
       return ([abs(sin((c-fmin)*(PI/2)/(range/6))^a), 1, 0])
    elif c <= fmin + 3*range/6 then
       return ([0, 1, abs(-sin((c-fmin)*(PI/2)/(range/6))^a)]) 
    elif c <= fmin + 4*range/6 then
       return ([0, abs(-sin((c-fmin)*(PI/2)/(range/6))^a), 1])  
    elif c <= fmin + 5*range/6 then
       return ([abs(sin((c-fmin)*(PI/2)/(range/6))^a), 0, 1])
    elif c <= fmin + 6*range/6 then
       return ([1, 0, abs(sin((c-fmin)*(PI/2)/(range/6))^a)])
    else 
       return ([1, 0,1])
  end_if
end_proc:

  colfunc := (x,y,z) -> colour(arctan(z/2)*(5.0001/6)/(0.5*PI)): //the factor of 5/6 prevents the spectrum from wrapping 
                                                                // by precisely one colour transition (m->r). 
                                                                //The extra 0.00001 is to prevent an error when evaluating the 5th elif clause. 
                                                                //No idea why, but it must be sometihng to do with there being a 5/6 in there.

  
  cplot := plot::Density(f, 
                         x = -xlimit..xlimit, 
                         y = -ylimit..ylimit, 
                         AntiAliased = TRUE,
                         Mesh = [mesh, mesh],
                         AxesTitleFont = ["Courier New", Bold, 14],
                         TicksLabelFont = ["Arial", 10],
                         FillColorFunction = colfunc,
                         YTicksDistance = 0.5,
                         XTicksDistance = 0.5):
  
  time((plot(cplot,
             Axes = Frame,
             Width = 8.5*unit::inch, 
             Height = 7*unit::inch)))*sec/1000.0

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeDimensionsUserComment
current18:25, 25 April 2007850×700 (130 KB)Inductiveload ({{Information |Description=Diagram of the absolute value of the real part of the exponential function in the complex plane, as the operand approaches infinity. The plot is given by: ::<math>z=\bigg|\operatorname{Im} \left (\exp \left( \frac{1}{x + i y} \r)
18:19, 25 April 2007850×700 (130 KB)Inductiveload (Reverted to earlier revision)
18:11, 25 April 2007850×700 (130 KB)Inductiveload (Reverted to earlier revision)
18:09, 25 April 2007850×700 (130 KB)Inductiveload (New smoother colour scheme)
18:08, 25 April 2007850×700 (130 KB)Inductiveload (New smoother colour scheme. )
02:06, 22 April 2007850×700 (139 KB)Inductiveload ({{Information |Description=Diagram of the absolute value real part of exponetial function in the complex plane, as the operand approaches infinity. The plot is given by: ::<math>z=\bigg|\operatorname{Im} \left (\exp \left( \frac{1}{x + i y} \right)\right))
No pages on the English Wikipedia link to this file. (Pages on other projects are not counted.)