Exponential random graph model
From Wikipedia, the free encyclopedia
An exponential random graph model is a mathematical description of the probable relationships within the structure of a social network. The possible ties among nodes of a network are regarded as random variables, and assumptions about dependencies among these random tie variables determine the general form of the exponential random graph model for the network. Examples of different dependence assumptions and their associated models are given, including Bernoulli, dyad-independent and Markov random graph models.
[edit] See also
[edit] References
- Anderson, C.J., Wasserman, S., & Crouch, B. (1999). A p* primer: Logit models for social networks. Social Networks, 21, 37-66.
- Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36, 96-127.
- Besag, J.E. (1975). Statistical analysis of non-lattice data. The Statistician, 24, 179-195.
- Borgatti, S., Everett, M., & Freeman, L. (1999). UCINET 5 for Windows: Software for social network analysis. Analytic Technologies, Harvard, MA
- Erdös, P., & Renyi, A. (1959). On random graphs. I. Publicationes Mathematicae(Debrecen), 6, 290-297.
- Feld, S., (1981). The focused organization of social ties. American Journal of Sociology, 86, 1015-1035.
- Frank, O., & Nowicki, K. (1993). Exploratory statistical analysis of networks. In J.Gimbel, J.W. Kennedy & L.V. Quintas (Eds.), Quo Vadis, Graph Theory? Annals of Discrete Mathematics, 55, 349-366.
- Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American StatisticalAssociation, 81, 832-842.
- Handcock, M.S. (2003). Statistical models for social networks: Degeneracy and inference. In Breiger, R., Carley, K., & Pattison, P. (eds.). Dynamic socialnetwork modeling and analysis (pp. 229-240). Washington DC: National Academies Press.
- Holland, P.W., & Leinhardt, S. (1981). An exponential family of probabilitydistributions for directed graphs (with discussion). Journal of the AmericanStatistical Association, 76, 33-65.
- Hunter, D. & Handcock, M. (2004). Inference in curved exponential family models for networks. Penn State Department of Statistics Technical Report 0402
- McCulloh, I., Lospinoso, J. & Carley, K.M. (2007). Probability Mechanics in Communications Networks. In Proceedings of the 12th International Conference on Applied Mathematics of the World Science Engineering Academy and Society, Cairo, Egypt. 30-31 December 2007.
- Pattison, P. E., & Wasserman, S. (1999). Logit models and logistic regressions for social networks, II. Multivariate relations. British Journal of Mathematical and Statistical Psychology, 52, 169-194.
- Robins, G.L., & Johnston, M. (2004). Joint social selection and social influence models for social networks: The interplay of ties and attributes. Satellite symposium, Thedynamics of networks and behaviours, Portoroz, Slovenia.
- Robins, G. L., & Pattison, P. E. (2001). Random graph models for temporal processes insocial networks. Journal of Mathematical Sociology, 25, 5-41.
- Robins, G. L., & Pattison, P. E. (2005). Interdependencies and social processes: Generalized dependence structures. In P. Carrington, J. Scott & S. Wasserman (Eds.) Models and Methods in Social Network Analysis (pp.192-214). New York: Cambridge University Press.
- Robins, G. L., Elliott, P., & Pattison, P. E. (2001). Network models for social selection processes. Social Networks, 23, 1-30.
- Robins, G. L., Pattison, P. E., & Elliott, P. (2001). Network models for social influence processes. Psychometrika, 66, 161-190.
- Robins, G. L., Pattison, P. E., & Wasserman, S. (1999). Logit models and logistic regressions for social networks, III. Valued relations. Psychometrika, 64, 371-394.
- Robins, G.L., Pattison, P., & Woolcock, J. (2004). Models for social networks with missing data. Social Networks, 26, 257-283
- Wasserman, S., & Pattison, P. E. (1996). Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p*. Psychometrika, 61, 401-425.
- Wasserman, S., & Robins, G. L. (2005). An Introduction to Random Graphs, Dependence Graphs, and p*. In P. Carrington, J. Scott & S. Wasserman (Eds.) Models and Methods in Social Network Analysis (pp.148-161). New York:Cambridge University Press