Enumerator polynomial

From Wikipedia, the free encyclopedia

In mathematics, the weight enumerator of a binary linear code C \subset \mathbb{F}_2^n of length n is defined to be

 W(C;x,y) = \sum_{w=0}^n A_w x^w y^{n-w}

where

 A_t = \#\{c \in C \mid w(c) = t \}

is defined to be the number of codewords c in C having Hamming weight

w(c) = t.

[edit] Basic properties

  1. W(C;0,1) = A0 = 1
  2.  W(C;1,1) = \sum_{w=0}^{n}A_{w}=|C|
  3.  W(C;1,0) = A_{n}= 1 \mbox{ iff } (1,\ldots,1)\in C\ \mbox{ and } 0 \mbox{ otherwise.}
  4.  W(C;1,-1) = \sum_{w=0}^{n}A_{w}(-1)^{n-w} = A_{n}+(-1)^{1}A_{n-1}+\ldots+(-1)^{n-1}A_{1}+(-1)^{n}A_{0}

[edit] MacWilliams identity

Denote the dual code of C \subset \mathbb{F}_2^n by

C^\perp = \{x \in \mathbb{F}_2^n \,\mid\, \langle x,c\rangle = 0 \mbox{  }\forall c \in C \}

(where < , > denotes the vector dot product and which is taken over \mathbb{F}_2).

The MacWilliams identity states that

W(C^\perp;x,y) = \frac{1}{\mid C \mid} W(C;y-x,y+x).