Eldfell

From Wikipedia, the free encyclopedia

Lava fountains tower over Heimaey in the early stages of the Eldfell eruption
Lava fountains tower over Heimaey in the early stages of the Eldfell eruption

Eldfell is a cinder cone volcano just over 200 metres (650 feet) high on the Icelandic island of Heimaey. It formed in a volcanic eruption which began without warning just outside the town of Heimaey on January 23, 1973. Its name means Fire Mountain in Icelandic.

The eruption caused a major crisis for the island and nearly led to its permanent evacuation. Volcanic ash fell over most of the island, destroying many houses, and a lava flow threatened to close off the harbour, the island's main income source via its fishing fleet. An operation was mounted to cool the advancing lava flow by pumping sea water onto it, which was successful in preventing the loss of the harbour.

Following the end of the eruption, the islanders got heat from the slowly cooling lava flows to provide hot water and to generate electricity. They also used some of the extensive tephra, fall-out of airborne volcanic material, to extend the runway at the island's small airport, and as landfill on which 200 new houses were built.

Contents

[edit] Background

Heimaey before the eruption
Heimaey before the eruption

Iceland is a region of frequent volcanic activity, due to its location astride the Mid-Atlantic Ridge, where the North American and Eurasian Plates are moving apart, and also over the Iceland hotspot, which greatly enhances the volcanic activity. It is estimated that a third of all the basaltic lava erupted in the world in recorded history has been produced by Icelandic eruptions.

The Vestmannaeyjar (Icelandic for Westman islands) archipelago lies off the south coast of Iceland, and consists of several small islands, all formed by eruptions in the Holocene epoch. Heimaey, the largest island in the group and the only inhabited one, also contains some material from the Pleistocene era. The most prominent feature on Heimaey before 1973 was Helgafell, a 200 metre (650 ft) high volcanic cone formed in an eruption about 5,000 years ago.

The Vestmannaeyjar archipelago was settled in about 874 AD, originally by escaped Irish slaves belonging to Norse settlers on the mainland. These settlers gave the islands their name, Ireland being west of mainland Scandinavia. Although plagued by poor water supplies and piracy during much of its history, Heimaey became the most important centre of the Icelandic fishing industry, having one of the few good harbours on the southern side of the country, and being situated in very rich fishing grounds.

Since the settlement, no eruptions had been known to occur on the islands until 1963, when a new member of the archipelago, Surtsey, was formed by a four year eruption which began offshore about 20 kilometres (12 miles) south-west of Heimaey. However, offshore eruptions may have taken place in 1637 and 1896. Scientists have speculated that volcanic activity in the archipelago may be increasing due to the southward propagation of the rift zone which crosses Iceland.

[edit] The eruption begins

Thick blocky lava flows advance into town
Thick blocky lava flows advance into town

At about 20:00 on 21 January 1973, a series of small tremors began to occur around Heimaey. They were too weak to be felt by the residents of the island, but a seismic station 60 kilometres (35 miles) away, near the mainland, recorded over 100 large tremors between 01:00 and 03:00 on 22 January that appeared to be emanating from south of Heimaey. The tremors continued at a reduced rate until 11:00 that day, after which they stopped until 23:00 that evening. From 23:00 until 01:34 on 23 January, seven tremors were detected that grew shallower and more intense, while the epicenter moved closer to the town of Vestmannaeyjar (Thorarinsson et al. 1973). The largest tremor measured 2.7 on the Richter scale.

Small tremors are very common at plate boundaries, and nothing here indicated that they heralded a major eruption. The onset of the eruption was therefore almost entirely unexpected. At about 01:55 on 23 January, a fissure opened up on the eastern side of the island, barely a kilometre away from the centre of the town of Heimaey, approximately 200 metres (650 ft) east of Kirkjubær (Church farm), where the island's church had once been located.

The fissure rapidly extended from 300 metres to a length of 2 kilometres (1.2 miles), crossing the island from one shore to the other. Submarine activity also occurred just offshore at the northern and southern ends of the fissure. Spectacular lava fountaining 50 to 150 metres high occurred along the whole fissure (Thorarinsson et al. 1973), which reached a maximum length of about 3 kilometres (2 miles) during the first few hours of the eruption, but activity soon became concentrated on one vent, about 0.8 kilometre (0.5 mile) north of the old volcanic cone of Helgafell and just outside the eastern edge of the town.

During the early days of the eruption, the rate of lava and tephra emission from the fissure was estimated to be 100 cubic metres per second (3,500 cubic feet per second), and within two days, the lava fountains had built a cinder cone over 100 metres (330 ft) high. The name initially given to the new volcano was Kirkjufell (Church Mountain), owing to its proximity to Kirkjubær. This name was not adopted by the official Icelandic place-naming committee, who chose Eldfell (Fire Mountain) instead, despite local opposition. The fountains’ Strombolian eruptions continued until 19 February, depositing thick tephra over the northern half of the island and adding to the cone until it was 200 metres (660 ft) high (Self et al. 1974). The eruption column that caused the air fall “occasionally rose to 9,000 metres (29,530 ft), or nearly to the tropopause” (Thorarinsson et al. 1973). Lava flows from the cone traveled north and east to produce a “continuously expanding lava delta” along the east coast of the island and into the harbor (Self et al. 1974), where small explosions built up a diminutive island that was soon overtaken by the advancing delta (Thorarinsson et al. 1973).

Self et al. explained in 1974 that "the viscosity of the lava fragments ejected by the blasts was, for basalt, relatively high. Very little spatter was produced and scoria bombs sometimes broke up explosively in flight (presumably due to rapid vesiculation), and by rapid impact on landing." The high viscosity led to what Williams and Moore (1983) described as a "massive, blocky aa lava flow which moved slowly but relentlessly toward the north, northeast, and east."

[edit] Evacuation

In the early hours of the eruption, the Icelandic State Civil Defence Organisation evacuated the entire population of Heimaey, having previously developed evacuation plans for an emergency such as this. The evacuation was necessary because lava flows were already moving slowly into the eastern side of town, and the whole of the small island was threatened by the likelihood of heavy ash fall.

Because of severe storms in the days before the eruption, almost the entire fishing fleet was in the harbour, a stroke of luck which greatly assisted the organisation of the rapid evacuation. The population was alerted to the situation by fire engines sounding their sirens, and gathered by the harbour with just the small amount of possessions they were able to carry. The first boats left for Þorlákshöfn at about 02:30, just half an hour after the start of the eruption.

Most of the population left the island by boat. Fortunately, the lava flows and tephra fall did not at first affect the island's airstrip, and a few people who were unable to travel by boat were evacuated by air—primarily the elderly and patients from the hospital. Planes were sent from Reykjavik and Keflavik to help speed the process (Thorarinsson et al. 1973). Within six hours of the onset of the eruption, almost all of the 5,300 people of the island were safely on the mainland. A few people remained to carry out essential functions and to salvage belongings from threatened houses. Cattle, horses and sheep on the island were emergency slaughtered.

[edit] Destruction of houses, creation of land

Houses buried by ash
Houses buried by ash

Houses close to the rift were soon destroyed by lava flows and tephra fall. A few days after the eruption began, the prevailing wind direction moved to the west, resulting in extensive tephra falls over the rest of the island, causing extensive property damage. Many houses were destroyed by the weight of the ash fall, but crews of volunteers working to clear the ash from roofs and board up windows saved many more. By the end of January, tephra covered most of the island, reaching 5 metres (16 ft) deep in places. Apart from falling ash, some houses were also burned down by fires caused by lava bombs, or overridden by advancing lava flows.

By early February, the heavy tephra fall had abated, but lava flows began to cause serious damage. Submarine activity just north of the fissure severed an electric power cable and a water pipeline which supplied electrical power and water from the Icelandic mainland, and lava began to flow into the harbour, a situation which caused serious concerns - if the harbour was destroyed, the island's fishing industry would be devastated. As Heimaey was responsible for some 25% of Iceland's total annual catch, the effect on the whole country's economy would be significant. Efforts to prevent the loss of the harbour are described further below.

Lava flows also moved into the sea east of the island, creating new land that would eventually add over 2 square kilometres (0.8 square mile) to the island, and into the eastern parts of town, destroying several hundred houses. The flows were thick and blocky aa lava (Icelandic:apalhraun) flows, and covered the ground to average depths of about 40 metre (130 ft), reaching 100 metre (330 ft) thick in places. Later on in the eruption, a surge of lava destroyed one fish processing plant and damaged two others, and also demolished the town's power generating plant.

Despite the eruption's close proximity to the town and the extensive property damage, only one fatality could be attributed to the eruption - a man who had broken into a chemist's store to acquire drugs was suffocated by toxic fumes. Carbon dioxide, with small amounts of poisonous gases, became concentrated in many buildings partially buried by tephra, and several other people were affected when entering these buildings.

Efforts to mitigate the hazards presented by the accumulation of poisonous gas included the building of a large tephra wall to divert gases away from the town, and the digging of a trench to channel away the CO2 (carbon dioxide). These defences were only partially effective, as they relied on the assumption that the gases were produced at the vent, and flowed into the town from there. It is believed that as least some of the CO2 originated deep within the volcanic conduit and percolated through older volcanic rocks, rising directly into the town.

[edit] Lava-cooling operations

Steam rises copiously where seawater is being used to cool the flows
Steam rises copiously where seawater is being used to cool the flows

The possibility of lava flows cutting off the harbour was the most significant threat facing the town. One contingency plan devised, should the harbour be closed off, was to cut through a low sand spit on the north side of the island to provide a new channel into the harbour, but it was hoped that if the lava flow could be slowed, this would not be necessary. Lava flows had been sprayed with water in attempts to slow them in Hawaii and on Mount Etna, but these had been rather small-scale operations with limited success. However, Páll Zóphóníasson calculated that it should be relatively easy to solidify the lava flows by spraying them with more copious amounts of sea water.

The first attempt to slow the lava flow by spraying the leading edge with sea water began on 7 February, and although the volume of water being pumped on was rather small at 100 litres per second (26 US (liquid) gallons per second), the flow was noticeably affected. The water cooling of the lava was slow, but achieved a maximum efficiency, with almost all the water being converted to steam. Once the viability of lava cooling had been proven, efforts to halt the flows were increased.

The pumping capacity was increased in early March, when a large chunk of the crater wall broke away from the summit of Eldfell and began to be carried along the top of the lava flow towards the harbour. The chunk, dubbed Flakkarinn (The Wanderer), would have seriously threatened the viability of the harbour if it had reached it, and the dredging boat Sandey was brought in on 1 March to prevent its advance. Professor Þorbjörn Sigurgeirsson provided advice to the pumping crews on where to direct their efforts to most efficiently slow the flows. Eventually the Wanderer broke up into two pieces which both stopped approximately 100 metres (330 ft) from the harbour mouth.

The ensuing lava-cooling operations were the most ambitious that had ever been undertaken. The Sandey was able to spray up to 400 litres per second (105 US gallons per second) onto the advancing flow, and a network of pipes was laid on top of the lava to distribute the seawater over as wide an area as possible. Wooden supports for the pipes caught fire where the lava was hottest, and even aluminium supports melted, but the pipes themselves were prevented from melting by the cold seawater flowing through them. Up to 12,000 square metres (3 acres) of lava flow could be cooled at one time, with internal barriers then being created within the flow, which thickened and piled up upon itself.

A lava flow nearly 4 months after it had stopped flowing into a street - photographed 23 July 1973
A lava flow nearly 4 months after it had stopped flowing into a street - photographed 23 July 1973

The work involved in laying pipes over an active lava was highly dangerous, with low visibility due to the extensive emission of steam. Rough tracks were made onto the flow by bulldozing tephra, but these tracks quickly became very uneven and moved several metres a day. The pipelayers used bulldozers and walkie-talkies to advance through the steam to lay more pipes. The workers dubbed themselves 'The Suicide Squad', and managed to lay pipes up to 130 metres (430 ft) inward from the flow front, directly over the advance. Although several men sustained minor burns, no serious injuries were received.

By the end of March, a fifth of the town had been covered by lava flows, and increased pumping capacity was required. Thirty-two pumps, each with a capacity of up to 1000 litres per second (265 US gallons per second), were brought in from the USA. After these pumps began to cool the flow advancing towards the town, its movement slowed dramatically and soon stopped. Failure of pump shafts became a problem after a few weeks, probably because they were designed for pumping oil rather than water, and new and improved shafts had to be manufactured in Reykjavík and brought in.

One notable feature of the lava cooling operation was the deposit of large amounts of salt where seawater was sprayed onto the lava. Large expanses of flow became encrusted with extensive white deposits, and it was estimated that up to 220,000 tonnes (240,000 short tons) of salt was deposited in total.

Sigurgeirsson (1974) called these protective measures “undoubtedly the most extensive that have ever been used in a volcanic eruption” and said that “had it not been for the cooling, the lava tongue [into the harbor] could be expected to…extend further along its direction of movement…for a whole month longer than it actually did. It failed by only about 100 meters to block the entrance to the harbor.”

The entire operation cost a total of $1,447,742 US at the time (Jonsson and Matthiasson, 1974).

The eruption had made headlines around the world when it began, and was covered constantly by Icelandic news crews throughout. In Europe, the eruption was one of the biggest news items while it continued, competing for front page space with breakthroughs then being made in the Vietnam War peace talks in Paris. The efforts of the islanders to halt the lava flows received particular attention, with coverage in publications such as National Geographic (e.g. Volcano overwhelms an Icelandic village, 1973). The attention focused on the island as a result of the eruption led to a later upsurge in tourism once the eruption was over [1].

[edit] The eruption dies down

Sketch showing the changes to Heimaey caused by the eruption of Eldfell
Sketch showing the changes to Heimaey caused by the eruption of Eldfell

The volume of lava being emitted during the eruption fell steadily after the first few days. From its initial rate of 100 cubic metres per second (3500 cubic feet per second), the emission rate fell to about 60 cubic metres per second (2100 cubic feet per second) by 8 February, and just 10 cubic metres per second (350 cubic feet per second) by the middle of March. The decline was slower after that, but by the middle of April the flow rate had fallen to about 5 cubic metres per second (180 cubic feet per second).

Short-lived submarine activity was discovered by a fishing vessel on 26 May, about 4 kilometres (2.5 miles) north-east of Heimaey and 1 kilometre (0.6 mile) off the coast of the mainland. The eruption finally came to an end in early July, when flowing lava was no longer visible, although subsurface flows may have continued for a few days longer. Shortly before the end of the eruption, a tiltmeter 1150 metres (3750 ft) from the crater which had been measuring ground deformation throughout the eruption detected subsidence towards the crater, implying that the shallow magma chamber which had fed the eruption was emptying out.

In total, the volume of lava and tephra emitted during the five-month eruption was estimated to be about 0.25 cubic kilometre (0.06 cubic mile). About 2.5 square kilometres (1 square mile) of new land was added to the island, increasing its pre-eruption area by some 20%. In the end, the harbour entrance was narrowed considerably but not closed off, and the new lava flow acted as a breakwater, actually improving the shelter afforded by the harbour. Flakkarinn rafted several hundred metres towards the harbour along the top of the lava flow, but came to a halt well away from the water's edge.

[edit] Heimaey since the eruption

The street shown above, cleared of lava after the eruption
The street shown above, cleared of lava after the eruption

The insides of lava flows can remain at temperatures of several hundred degrees for many years due to the very low thermal conductivity of rock. Following the end of the eruption, scientists began to assess the feasibility of extracting geothermal heat from the gradually cooling flows. Experimental heating systems were soon devised, and by 1974 the first house was connected. The scheme was extended to several more houses and the hospital, and in 1979 construction began of four larger plants to extract heat from the flows. Each plant extracted energy from a square 100 metres (330 ft) on each side, by percolating water down into the hot parts and collecting the resulting steam. Up to 40 megawatts (MW) of power could be generated by the plants, which also then supplied hot water to nearly every house on the island.

Helgafell (left) and Eldfell (right) today. The line of the 1973 fissure south of Eldfell is clearly seen
Helgafell (left) and Eldfell (right) today. The line of the 1973 fissure south of Eldfell is clearly seen

The abundant tephra produced by the eruption was used to extend the runways at the island's small airport, and also as landfill on which 200 new homes were built. By mid-1974, about half the pre-eruption population had returned to the island, and by March 1975, about 80% had returned. The recovery and reconstruction of Heimaey was paid for by all Icelanders via a hypothecated sales tax, as well as through international aid totalling US$ 2.1 million primarily from Denmark but with substantial contributions from the United States and several international organisations. With the harbour improved by the new lava breakwater, the fishing industry regained its former vigour and the island today remains the most important fishing centre in the nation.

By the end of the eruption, Eldfell stood about 220 metres (720 ft) above sea level. Since then, its height has dropped by 18 to 20 metres (60 to 65 feet), due to slumping and compacting of the unconsolidated gravelly tephra as well as wind erosion. The islanders have planted grass around the lower slopes of the otherwise bare hill, to stabilise it against further erosion, and eventually it is expected that most of the volcano will be covered by grass, as neighbouring Helgafell is.

[edit] See also

[edit] References

  1. Bertmarks förlag, K.G., Aktuellt 1973 (1973) ISSN 0343-6993, p. 97-104
  2. Center for Short-Lived Phenomena Event Reports 1545, 1547, 1552, 1567, published by the Smithsonian Institution
  3. Jonsson, V.K. and Matthiasson, M. (1974), "Lava Cooling on Heimaey – Methods and Procedures", in Williams, R.S., ed., "Lava-Cooling Operations During the 1973 Eruption of Eldfell Volcano, Heimaey, Vestmannauyjar, Iceland", U.S. Geological Survey Open-file Report 97-724, p. 28-62
  4. Kristjansson L., Simon I., Cohen M.L., Björnsson S. (1975), Ground tilt measurements during the 1973 Heimaey eruption, Journal of Geophysical Research, v. 80, p. 2951–2954
  5. Mattsson H., Hoskuldsson A. (2003), Geology of the Heimaey volcanic centre, south Iceland: early evolution of a central volcano in a propagating rift?, Journal of Volcanology and Geothermal Research, v. 127, p. 55–71
  6. McPhee, J., The Control of Nature (1989) ISBN 0-374-12890-1 (The middle third of this book is devoted to this eruption, its immediate effects, the lava-cooling operations, and the people involved and affected.)
  7. Self, S., Sparks, R.S.J., Booth, B. and Walker, G.P.L. (1974), "The 1973 Heimaey Strombolian Scoria deposit, Iceland", Geological Magazine, v. 111, no. 6, p. 539-548
  8. Sigurgeirsson, P. (1974), "Lava Cooling", in Williams, R.S., ed., "Lava-Cooling Operations During the 1973 Eruption of Eldfell Volcano, Heimaey, Vestmannauyjar, Iceland", U.S. Geological Survey Open-file Report 97-724, p. 2-27
  9. Thorarinsson, S., Steinthorsson, S., Einarsson, T., Kristmannsdottir, H. and Oskarsson, N. (1973), "The eruption on Heimaey, Iceland", Nature, v. 241, no. 5389, p. 372-375
  10. Williams, R.S., ed., Lava-Cooling Operations During the 1973 Eruption of Eldfell Volcano, Heimaey, Vestmannaeyjar, Iceland, U.S. Geological Survey Open-File Report 97-724
  11. Williams Jr. R.S., Moore J.G., (1983), Man Against Volcano: The Eruption on Heimaey, Vestmannaeyjar, Iceland (2nd edition): published by USGS. Also retrieved December 5, 2007, from http://pubs.usgs.gov/gip/heimaey

[edit] External links

Coordinates: 63°26′N, 20°16′W