Eisenstein prime
From Wikipedia, the free encyclopedia
In mathematics, an Eisenstein prime is an Eisenstein integer
that is irreducible (or equivalently prime) in the ring-theoretic sense: its only Eisenstein divisors are the units (±1, ±ω, ±ω2), a + bω itself and its associates.
The associates (unit multiples) and the complex conjugate of any Eisenstein prime are also prime.
An Eisenstein integer z = a + bω is an Eisenstein prime if and only if either of the following (mutually exclusive) conditions holds:
- z is equal to the product of a unit and a natural prime of the form 3n − 1,
- |z|2 = a2 − ab + b2 is a natural prime (necessarily congruent to 0 or 1 modulo 3).
It follows that the absolute valued squared of every Eisenstein prime is a natural prime or the square of a natural prime.
The first few Eisenstein primes that equal a natural prime 3n − 1 are:
Natural primes that are congruent to 0 or 1 modulo 3 are not Eisenstein primes: they admit nontrivial factorizations in Z[ω]. For example:
- 3 = −(1+2ω)2
- 7 = (3+ω)(2−ω).
Some non-real Eisenstein primes are
- 2 + ω, 3 + ω, 4 + ω, 5 + 2ω, 6 + ω, 7 + ω, 7 + 3ω
Up to conjugacy and unit multiples, the primes listed above, together with 2 and 5, are all the Eisenstein primes of absolute value not exceeding 7.
As of 2007, the largest known (real) Eisenstein prime is 27653·29167433 + 1, which is the seventh largest known prime, discovered by Gordon [1]. All larger known primes are Mersenne primes, discovered by GIMPS. Real Eisenstein primes are congruent to 2 mod 3, and Mersenne primes (except the smallest, 3) are congruent to 1 mod 3. Compare the Gaussian primes.