Edman degradation

From Wikipedia, the free encyclopedia

Edman degradation, developed by Pehr Edman, is a method of sequencing amino acids in a peptide.[1] In this method, the amino-terminal residue is labeled and cleaved from the peptide without disrupting the peptide bonds between other amino acid residues.

[edit] Mechanism for Edman Degradation

Edman Degradation with generic amino acid peptide chain.
Edman Degradation with generic amino acid peptide chain.

Phenylisothiocyanate is reacted with an uncharged terminal amino group, under mildly alkaline conditions, to form a cyclical phenylthiocarbamoyl derivative. Then, under acidic conditions, this derivative of the terminal amino acid is cleaved as a thiazolinone derivative. The thiazolinone amino acid is then selectively extracted into an organic solvent and treated with acid to form the more stable phenylthiohydantoin (PTH)- amino acid derivative that can be identified by using chromatography or electrophoresis. This procedure can then be repeated again to identify the next amino acid. A major drawback to this technique is that the peptides being sequenced in this manner cannot have more than 50 to 60 residues (and in practice, under 30). The peptide length is limited due to the cyclical derivitization not always going to completion. The derivitization problem can be resolved by cleaving large peptides into smaller peptides before proceeding with the reaction. It is able to accurately sequence up to 30 amino acids with 98% efficiency per amino acid. An advantage of the Edman degradation is that it only uses 10 - 100 picomoles of peptide for the sequencing process. Edman degradation reaction is automated to speed up the process. [2]

[edit] References

  1. ^ Edman, P. Acta Chem. Scand. 1950, 4, 283.
  2. ^ Automated Edman degradation: the protein sequenator. Methods Enzymol. 1973, 27, 942-1010.

[edit] See also