E7½

From Wikipedia, the free encyclopedia

The correct title of this article is E. It features superscript or subscript characters that are substituted or omitted because of technical limitations.

In mathematics, the Lie algebra E is a subalgebra of E8 containing E7 defined by Landsberg and Manivel in order to fill the "hole" in the exceptional series of simple Lie algebras observed by Cvitanovic, Deligne, Cohen and de Man, (although it is not itself simple). It has dimension 190, and as a representation of its subalgebra E7 splits as E7 ⊕ (56) ⊕ R, where (56) is the 56-dimensional irreducible representation of E7.

[edit] References

  • A.M. Cohen, R. de Man, Computational evidence for Deligne's conjecture regarding exceptional Lie groups, C. R. Acad. Sci. Paris, Série I 322 (1996) 427--432.
  • P. Deligne, La série exceptionnelle de groupes de Lie, C. R. Acad. Sci. Paris, Série I 322 (1996) 321--326.
  • P. Deligne, R. de Man, La série exceptionnelle de groupes de Lie II, C. R. Acad. Sci. Paris, Série I 323 (1996) 577--582.
  • Landsberg, J. M. Manivel, L. The sextonions and E. Adv. Math. 201 (2006), no. 1, 143--179.
This algebra-related article is a stub. You can help Wikipedia by expanding it.