Duhamel's principle

From Wikipedia, the free encyclopedia

In mathematics, and more specifically in partial differential equations, Duhamel's principle is the solution to the inhomogeneous wave equation. It is named after Jean-Maria-Constant Duhamel (1797–1872), a French applied mathematician.

Given the inhomogeneous wave equation:

u_{tt}-c^2u_{xx}=f(x,t)\,

with initial conditions

u(x,0)=u_t(x,0)=0.\,

The solution is

u(x,t) = \frac{1}{2c}\int_0^t\int_{x-c(t-s)}^{x+c(t-s)} f(\xi,s)\,d\xi\,ds.\,

[edit] Constant-coefficient linear ODE

Duhamel's principle is the result that the solution to an inhomogeneous, linear, partial differential equation can be solved by first finding the solution for a step input, and then superposing using Duhamel's integral. Suppose we have a constant coefficient, mth order inhomogeneous ordinary differential equation.

 P(\partial_t)u(t) = F(t) \,
 \partial_t^j u(0) = 0, \; 0 \leq j \leq m-1

where

 P(\partial_t) := a_m \partial_t^m + \cdots + a_1 \partial_t + a_0,\; a_m \neq 0.

We can reduce this to the solution of a homogeneous ODE using the following method. All steps are done formally, ignoring necessary requirements for the solution to be well defined.

First let G solve

 P(\partial_t)G = 0, \; \partial^j_t G(0) = 0, \quad 0\leq j \leq m-2, \; \partial_t^{m-1} G(0) = 1/a_m.

Define  H = G \chi_{[0,\infty)} , with \chi_{[0,\infty]} being the characteristic function on the interval [0,\infty). Then we have

 P(\partial_t) H = \delta

in the sense of distributions. Therefore

 u(t) = (H \ast F)(t)
 = \int_0^\infty G(\tau)F(t-\tau)\,d\tau
 = \int_{-\infty}^t G(t-\tau)F(\tau)\, d\tau

solves the ODE.

[edit] Constant-coefficient linear PDE

More generally, suppose we have a constant coefficient inhomogeneous partial differential equation

 P(\partial_t,D_x)u(t,x) = F(t,x) \,

where

 D_x = \frac{1}{i} \frac{\partial}{\partial x} \,

We can reduce this to the solution of a homogeneous ODE using the following method. All steps are done formally, ignoring necessary requirements for the solution to be well defined.

First, taking the Fourier transform in x we have

 P(\partial_t,\xi)\hat u(t,\xi) = \hat F(t,\xi).

Assume that  P(\partial_t,\xi) is an mth order ODE in t. Let am be the coefficient of the highest order term of  P(\partial_t,\xi) . Now for every ξ let G(t,ξ) solve

 P(\partial_t,\xi)G(t,\xi) = 0, \; \partial^j_t G(0,\xi) = 0 \; \mbox{ for } 0\leq j \leq m-2, \; \partial_t^{m-1} G(0,\xi) = 1/a_m.

Define H(t,\xi) = G(t,\xi) \chi_{[0,\infty)}(t) . We then have

 P(\partial_t,\xi) H(t,\xi) = \delta(t)

in the sense of distributions. Therefore

 \hat u(t,\xi) = (H(\cdot,\xi) \ast \hat F(\cdot,\xi))(t)
 = \int_0^\infty G(\tau,\xi)F(t-\tau,\xi)\,d\tau
 = \int_{-\infty}^t G(t-\tau,\xi)F(\tau,\xi)\, d\tau

solves the PDE (after transforming back to x).

This mathematical analysis-related article is a stub. You can help Wikipedia by expanding it.