Talk:Drift velocity

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
Stub This article has been rated as Stub-Class on the assessment scale.
??? This article has not yet received an importance rating within physics.

Help with this template This article has been rated but has no comments. If appropriate, please review the article and leave comments here to identify the strengths and weaknesses of the article and what work it will need.

This article has been automatically assessed as Stub-Class by WikiProject Physics because it uses a stub template.
  • If you agree with the assessment, please remove {{Physics}}'s auto=yes parameter from this talk page.
  • If you disagree with the assessment, please change it by editing the class parameter of the {{Physics}} template, removing {{Physics}}'s auto=yes parameter from this talk page, and removing the stub template from the article.

i think this article is only a stub, so i put the tag on the test.

Many information is absent.

Equation Error:

∂Q = (nAv)q is surely not correct. The right-hand side is equal to the current, not the change in Q. Either the LHS should read "I" or the RHS should include "dt" in the numerator. -- Anonymous

[edit] More changes are desirable

I just made some cosmetic changes now, but more changes are necessary. Probably rho for charge density is confusing in a context where rho is commonly used for specific resistivity. The article is also incomplete. I would have expected a relation with the relaxation time tau here. /Pieter Kuiper 11:44, 20 September 2007 (UTC)

[edit] Electron velocity

I just redirected this term to here, as they are essentially the same aren't they? The text of the article is below.

{{Unreferenced|date=February 2007}}
Electron velocity is a very important value in computing. Electron is the subatomic particle responsible for electromagnetic field, that's the way to transmit information in electronic hardware. In a metallic atom the electrons on his orbit are relatively free to move from an atom to one other; this movement is cause of current, which is an electron's flow.
According to relativistic model electron in an hydrogen atom would be moving at 2.42 x 108 cm/sec.
For now, the most widely-used material with high electronic velocity is silicon, but faster ones are possible:
  1. Gallium arsenide
  2. Indium(III) phosphide
  3. Indium gallium arsenide


{{electronics-stub}}
{{comp-sci-stub}}